5 research outputs found

    Multivariate statistical process control of an industrial-scale fed-batch simulator

    Get PDF
    This article presents an improved batch-to-batch optimisation technique that is shown to be able to bring the yield closer to its set-point from one batch to the next. In addition, an innovative Model Predictive Control technique is proposed that over multiple batches, reduces the variability in yield that occurs as a result of random variations in raw material properties and in-batch process fluctuations. The proposed controller uses validity constraints to restrict the decisional space to that described by the identification dataset that was used to develop an adaptive multi-way partial least squares model of the process. A further contribution of this article is the formulation of a bootstrap calculation to determine confidence intervals within the hard constraints imposed on model validity. The proposed control strategy was applied to a realistic industrial-scale fed-batch penicillin simulator, where its performance was demonstrated to provide improved consistency and yield when compared with nominal operation

    Multivariate statistical data analysis of cell-free protein synthesis toward monitoring and control

    Get PDF
    The optimization and control of cell free protein synthesis (CFPS) presents an ongoing challenge due to the complex synergies and nonlinearities that cannot be fully explained in first principle models. This article explores the use of multivariate statistical tools for analyzing data sets collected from the CFPS of Cereulide monoclonal antibodies. During the collection of these data sets, several of the process parameters were modified to investigate their effect on the end‐point product (yield). Through the application of principal component analysis and partial least squares (PLS), important correlations in the process could be identified. For example, yield had a positive correlation with pH and NH3 and a negative correlation with CO2 and dissolved oxygen. It was also found that PLS was able to provide a long‐term prediction of product yield. The presented work illustrates that multivariate statistical techniques provide important insights that can help support the operation and control of CFPS processes

    Modern day monitoring and control challenges outlined on an industrial-scale benchmark fermentation process

    Get PDF
    This paper outlines real-world control challenges faced by modern-day biopharmaceutical facilities through the extension of a previously developed industrial-scale penicillin fermentation simulation (IndPenSim). The extensions include the addition of a simulated Raman spectroscopy device for the purpose of developing, evaluating and implementation of advanced and innovative control solutions applicable to biotechnology facilities. IndPenSim can be operated in fixed or operator controlled mode and generates all the available on-line, off-line and Raman spectra for each batch. The capabilities of IndPenSim were initially demonstrated through the implementation of a QbD methodology utilising the three stages of the PAT framework. Furthermore, IndPenSim evaluated a fault detection algorithm to detect process faults occurring on different batches recorded throughout a yearly campaign. The simulator and all data presented here are available to download at www.industrialpenicillinsimulation.com and acts as a benchmark for researchers to analyse, improve and optimise the current control strategy implemented on this facility. Additionally, a highly valuable data resource containing 100 batches with all available process and Raman spectroscopy measurements is freely available to download. This data is highly suitable for the development of big data analytics, machine learning (ML) or artificial intelligence (AI) algorithms applicable to the biopharmaceutical industry

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe
    corecore