11,621 research outputs found
Ripples in Tapped or Blown Powder
We observe ripples forming on the surface of a granular powder in a container
submitted from below to a series of brief and distinct shocks. After a few
taps, the pattern turns out to be stable against any further shock of the same
amplitude. We find experimentally that the characteristic wavelength of the
pattern is proportional to the amplitude of the shocks. Starting from
consideration involving Darcy's law for air flow through the porous granulate
and avalanche properties, we build up a semi-quantitative model which fits
satisfactorily the set of experimental observations as well as a couple of
additional experiments.Comment: 7 pages, four postscript figures, submitted PRL 11/19/9
Dynamics of shallow impact cratering
We present data for the time-dependence of wooden spheres penetrating into a
loose non-cohesive packing of glass beads. The stopping time is a factor of
three longer than the time needed to travel the total penetration
distance at the impact speed . The acceleration decreases
monotonically throughout the impact. These kinematics are modelled by a
position- and velocity-dependent stopping force that is constrained to
reproduce prior observations for the scaling of the penetration depth with the
total drop distance.Comment: 4 pages, experimen
Magneto-elastic oscillations of neutron stars: exploring different magnetic field configurations
We study magneto-elastic oscillations of highly magnetized neutron stars
(magnetars) which have been proposed as an explanation for the quasi-periodic
oscillations (QPOs) appearing in the decaying tail of the giant flares of soft
gamma-ray repeaters (SGRs). We extend previous studies by investigating various
magnetic field configurations, computing the Alfv\'en spectrum in each case and
performing magneto-elastic simulations for a selected number of models. By
identifying the observed frequencies of 28 Hz (SGR 1900+14) and 30 Hz (SGR
1806-20) with the fundamental Alfv\'en QPOs, we estimate the required surface
magnetic field strength. For the magnetic field configurations investigated
(dipole-like poloidal, mixed toroidal-poloidal with a dipole-like poloidal
component and a toroidal field confined to the region of field lines closing
inside the star, and for poloidal fields with an additional quadrupole-like
component) the estimated dipole spin-down magnetic fields are between 8x10^14 G
and 4x10^15 G, in broad agreement with spin-down estimates for the SGR sources
producing giant flares. A number of these models exhibit a rich Alfv\'en
continuum revealing new turning points which can produce QPOs. This allows one
to explain most of the observed QPO frequencies as associated with
magneto-elastic QPOs. In particular, we construct a possible configuration with
two turning points in the spectrum which can explain all observed QPOs of SGR
1900+14. Finally, we find that magnetic field configurations which are entirely
confined in the crust (if the core is assumed to be a type I superconductor)
are not favoured, due to difficulties in explaining the lowest observed QPO
frequencies (f<30 Hz).Comment: 21 pages, 16 figures, 6 tables, matched to version accepted by MNRAS
with extended comparison/discussion to previous wor
Adaptive saccade controller inspired by the primates' cerebellum
Saccades are fast eye movements that allow humans and robots to bring the visual target in the center of the visual field. Saccades are open loop with respect to the vision system, thus their execution require a precise knowledge of the internal model of the oculomotor system. In this work, we modeled the saccade control, taking inspiration from the recurrent loops between the cerebellum and the brainstem. In this model, the brainstem acts as a fixed-inverse model of the oculomotor system, while the cerebellum acts as an adaptive element that learns the internal model of the oculomotor system. The adaptive filter is implemented using a state-of-the-art neural network, called I-SSGPR. The proposed approach, namely recurrent architecture, was validated through experiments performed both in simulation and on an antropomorphic robotic head. Moreover, we compared the recurrent architecture with another model of the cerebellum, the feedback error learning. Achieved results show that the recurrent architecture outperforms the feedback error learning in terms of accuracy and insensitivity to the choice of the feedback controller
Learning the visual–oculomotor transformation: effects on saccade control and space representation
Active eye movements can be exploited to build a visuomotor representation of the surrounding environment. Maintaining and improving such representation requires to update the internal model involved in the generation of eye movements. From this perspective, action and perception are thus tightly coupled and interdependent. In this work, we encoded the internal model for oculomotor control with an adaptive filter inspired by the functionality of the cerebellum. Recurrent loops between a feed-back controller and the internal model allow our system to perform accurate binocular saccades and create an implicit representation of the nearby space. Simulation results show that this recurrent architecture outperforms classical feedback-error-learning in terms of both accuracy and sensitivity to system parameters. The proposed approach was validated implementing the framework on an anthropomorphic robotic head
The shape of jamming arches in two-dimensional deposits of granular materials
We present experimental results on the shape of arches that block the outlet
of a two dimensional silo. For a range of outlet sizes, we measure some
properties of the arches such as the number of particles involved, the span,
the aspect ratio, and the angles between mutually stabilizing particles. These
measurements shed light on the role of frictional tangential forces in arching.
In addition, we find that arches tend to adopt an aspect ratio (the quotient
between height and half the span) close to one, suggesting an isotropic load.
The comparison of the experimental results with data from numerical models of
the arches formed in the bulk of a granular column reveals the similarities of
both, as well as some limitations in the few existing models.Comment: 8 pages; submitted to Physical Review
Wall effects on granular heap stability
We investigate the effects of lateral walls on the angle of movement and on
the angle of repose of a granular pile. Our experimental results for beads
immersed in water are similar to previous results obtained in air and to recent
numerical simulations. All of these results, showing an increase of pile angles
with a decreasing gap width, are explained by a model based on the redirection
of stresses through the granular media. Two regimes are observed depending on
the bead diameter. For large beads, the range of wall effects corresponds to a
constant number of beads whereas it corresponds to a constant characteristic
length for small beads as they aggregate via van der Waals forces
- …