1,494 research outputs found

    Multiphase Machines and Drives-Revisited

    Get PDF
    Although the concept of a multiphase drive system dates back to the middle of the 20th century, the initial pace of development was rather slow, as witnessed by the first two surveys of the area published in the beginning of this century. However, considerably new developments have resulted in the last decade of the 20th century and the beginning of this century, leading to an authoritative survey of the asymmetrical six-phase drive control and subsequently of the review of the complete area. This also initiated the organization and subsequent publication of the first IEEE Transactions on Industrial Electronics "Special Section on Multiphase Machines and Drives" in May 2008, which commenced with another survey paper, and that contained 12 original research papers. Since the publication of this Special Section in May 2008, the level of interest and pace of developments in the area have further accelerated and substantial new knowledge has been generatedwith an ever-increasing number of published research papers and reported new industrial applications. Such a trend has been emphasized in a recent paper. It therefore seemed appropriate to revisit the area and organize this Special Section as a sequel to the first one. The call for the Special Section papers resulted in 51 submissions, almost twice as many as the total back in 2008, thus confirming a substantial growth of the area. Indeed, the amount of new knowledge acquired since the publication of the first Special Section in 2008 has meant that it was not possible to provide a complete and thorough survey of the field in a single review paper

    On the benefits of tasking with OpenMP

    Get PDF
    Tasking promises a model to program parallel applications that provides intuitive semantics. In the case of tasks with dependences, it also promises better load balancing by removing global synchronizations (barriers), and potential for improved locality. Still, the adoption of tasking in production HPC codes has been slow. Despite OpenMP supporting tasks, most codes rely on worksharing-loop constructs alongside MPI primitives. This paper provides insights on the benefits of tasking over the worksharing-loop model by reporting on the experience of taskifying an adaptive mesh refinement proxy application: miniAMR. The performance evaluation shows the taskified implementation being 15–30% faster than the loop-parallel one for certain thread counts across four systems, three architectures and four compilers thanks to better load balancing and system utilization. Dynamic scheduling of loops narrows the gap but still falls short of tasking due to serial sections between loops. Locality improvements are incidental due to the lack of locality-aware scheduling. Overall, the introduction of asynchrony with tasking lives up to its promises, provided that programmers parallelize beyond individual loops and across application phases.Peer ReviewedPostprint (author's final draft

    PHM12 COST-EFFECTIVENESS OF DASATINIBVS IMATINIB 800 MG/ DAY IN PATIENTS WITH IMATINIB-RESISTANT CHRONIC MYELOID LEUKEMIA IN SPAIN

    Get PDF

    Direct Torque and Predictive Control Strategies in Nine-phase Electric Drives Using Virtual Voltage Vectors

    Get PDF
    One of the main distinctive features of multiphase machines is the appearance of new degrees of freedom ( - voltages/currents) that do not exist in their three-phase counterparts. As a direct consequence, control approaches that apply a single switching state during the sampling period cannot achieve zero average - voltage production. In direct torque control (DTC) this implies that - currents are not regulated, whereas in finite-control-set model predictive control (FCS-MPC) an enhanced - current regulation is feasible only at the expense of disturbing the flux/torque production. Aiming to avoid these shortcomings, this work makes use of the concept of synthetic/virtual voltage vectors (VVs) to nullify/limit the - voltage production in order to improve the current regulation in the secondary planes. Two strategies using two and four virtual voltage vectors (2-VV and 4-VV, respectively) are proposed and compared with the standard case that applies a single switching state. Since standard MPC has the capability to indirectly regulate - currents, the improvements with the inclusion of VVs are expected to be more significant in DTC strategies. Experimental results validate the proposed VVs and confirm the expectations through a detailed performance comparison of standard, 2-VV and 4-VV approaches for DTC and MPC strategies

    Fault-Tolerant Operation of Six-Phase Energy Conversion Systems With Parallel Machine-Side Converters

    Get PDF
    The fault tolerance provided by multiphase machines is one of the most attractive features for industry applications where a high degree of reliability is required. Aiming to take advantage of such postfault operating capability, some newly designed full-power energy conversion systems are selecting machines with more than three phases. Although the use of parallel converters is usual in high-power three-phase electrical drives, the fault tolerance of multiphase machines has been mainly considered with single supply from a multiphase converter. This study addresses the fault-tolerant capability of six-phase energy conversion systems supplied with parallel converters, deriving the current references and control strategy that need to be utilized to maximize torque/power production. Experimental results show that it is possible to increase the postfault rating of the system if some degree of imbalance in the current sharing between the two sets of threephase windings is permitted

    A Simple Braking Method for Six-phase Induction Motor Drives with Unidirectional Power Flow in the Base-speed Region

    Get PDF
    Induction motor drives supplied from diode front-end rectifiers are commonly used in industrial applications due to their low cost and reliability. However, the two-quadrant operation of such a topology makes the regenerative braking impossible. Braking resistors can be used to dissipate the braking power and provide enhanced braking capability, but additional hardware is then necessary. Alternatively, the braking power can be dissipated within the inverter/motor by control software reconfiguration. In this scenario, the additional degrees of freedom of multiphase drives can be used to increase the system losses without disturbing the flux and torque production. Experimental results confirm the possibility to enhance the braking capability of six-phase drives with only few changes in the control scheme

    Postfault operation of an asymmetrical six-phase induction machine with single and two isolated neutral points

    Get PDF
    The paper presents a study of postfault control for an asymmetrical six-phase induction machine with single and two isolated neutral points, during single open-phase fault. Postfault control is based on the normal decoupling (Clarke) transformation, so that reconfiguration of the controller is minimized. Effect of the single open-phase fault on the machine equations under this control structure is discussed. Different modes of postfault operation are analyzed and are further compared in terms of the achievable torque and stator winding losses. Validity of the analysis is verified using experimental results obtained from a six-phase induction motor drive prototype. © 1986-2012 IEEE

    Postfault Operation of an Asymmetrical Six-Phase Induction Machine With Single and Two Isolated Neutral Points

    Get PDF
    The paper presents a study of postfault control for an asymmetrical six-phase induction machine with single and two isolated neutral points, during single open-phase fault. Postfault control is based on the normal decoupling (Clarke) transformation, so that reconfiguration of the controller is minimized. Effect of the single open-phase fault on the machine equations under this control structure is discussed. Different modes of postfault operation are analyzed and are further compared in terms of the achievable torque and stator winding losses. Validity of the analysis is verified using experimental results obtained from a six-phase induction motor drive prototype
    corecore