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Abstract. Tasking promises a model to program parallel applications
that provides intuitive semantics. In the case of tasks with dependences, it
also promises better load balancing by removing global synchronizations
(barriers), and potential for improved locality. Still, the adoption of tasking
in production HPC codes has been slow. Despite OpenMP supporting
tasks, most codes rely on worksharing-loop constructs alongside MPI
primitives. This paper provides insights on the benefits of tasking over the
worksharing-loop model by reporting on the experience of taskifying an
adaptive mesh refinement proxy application: miniAMR. The performance
evaluation shows the taskified implementation being 15–30% faster than
the loop-parallel one for certain thread counts across four systems, three
architectures and four compilers thanks to better load balancing and
system utilization. Dynamic scheduling of loops narrows the gap but
still falls short of tasking due to serial sections between loops. Locality
improvements are incidental due to the lack of locality-aware scheduling.
Overall, the introduction of asynchrony with tasking lives up to its
promises, provided that programmers parallelize beyond individual loops
and across application phases.
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1 Introduction

Tasking is an important feature of multiple parallel programming models tar-
geting both shared and distributed memory, such as Thread Building Blocks
(TBB), Chapel, OmpSs, OpenACC, Kokkos, among others. OpenMP, mainstream
programming model in the high performance computing (HPC) space, includes
tasking since version 3.0 (2008) [2, 5] and tasking with dependences since version
4.0 (2013) through task constructs [6, 17, 18]. OpenMP also supports tasking for
distributed memory with target constructs. Tasking is widely used to offload
computation to accelerators in heterogeneous systems. CUDA, OpenCL and
OpenACC kernels, and OpenMP target concepts are examples of this. However,
the adoption of tasking for shared memory (threading) has been slow. Many
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HPC codes include threading with OpenMP alongside MPI, mostly through the
use of worksharing-loop constructs with fork-join semantics. For more developers
to taskify their codes, the effort required and the resulting benefits need to be
considered.

This paper is an assessment of the benefits promised by tasking. These benefits
include an intuitive parallel work unit —a task— which can be defined as a
piece of computation on a piece of data that could be run in parallel. They also
include the ability to define data-flow semantics between tasks using dependences
and remove expensive global synchronizations and their potential load imbal-
ance. We contribute to the discussion on tasking adoption in the community
with our experience taskifying an adaptive mesh refinement (AMR) proxy-app:
miniAMR [12, 16]. This proxy-app It is part of the Mantevo [10] project and the
Exascale Computing Project Proxy Apps Suite [7] and models the refinement and
communication phases of AMR codes. It is programmed in MPI and OpenMP,
the OpenMP parallelization using worksharing-loop constructs only. Our task-
ification focuses on removing global synchronization between communication
and computation phases to reduce the inherent load imbalance of working on
blocks at different refinement levels. A previous paper [14] improves miniAMR
load imbalance at the MPI level by changing its algorithmic implementation. In
this work, we focus on maintaining the algorithmic properties of the reference
miniAMR implementation and replacing loop-level parallel regions by task re-
gions. The goal is to quantify the resulting performance benefits and report on
our experience to give guidance on how to taskify such type of parallel work and
give a sense of the effort required.

We report better performance using tasks on multiple systems including
Marvell ThunderX2, IBM POWER9, Intel Skylake-SP and AMD EPYC. Overall,
the taskification experience shows that developers need to think on parallel
work across application phases, which involves larger code sections than only
focusing on individual loops. The results show that tasking provides 15-30%
better performance for certain thread counts and across the evaluated platforms.
These improvements are mainly due to removal of load imbalance and avoidance
of serial sections leading to a higher thread utilization.

2 The miniAMR Proxy Application

Adaptive mesh refinement (AMR) was developed as a way to model the physical
domain with different levels of precision in numerical problems [3, 4], with the goal
of achieving higher precision in regions where it is needed (such as boundaries,
points of discontinuity or steep gradients [4]). The physical domain is a rectangle
(a rectangular prism in 3D space) that is represented as nested rectangular grids
that share boundaries, with denser (finer) grids where higher precision is required.

The numerical algorithm is applied to each of the rectangles of the grid, with
the corresponding communication on the boundaries between grid elements. The
grid is updated when the conditions of the domain change: an error formula is
defined to force the use of a finer grid when a threshold value is reached. The
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Fig. 1. Visualization of a unit cube with a domain defined by two empty spheres, using
the vertices (left) and boundaries (right) of the grids. Colors have no special meaning.

refinement is carried out by splitting the elements of the grid into two equal parts
in all dimensions. This means that, in 2D, each rectangle is split into 4 other
rectangles (quadrants) and, in 3D, each prism is split into 8 prisms (octants).

MiniAMR is a proxy application released as part of version 3.0 of the Mantevo
suite [10, 11] that is used to model the refinement/coarsening and communication
routines of parallel AMR applications using MPI. The physical domain is modelled
as a unit cube in 3D space divided in blocks in all three dimensions, which define
the coarsest level of the grid.

To simulate the changes in the domain, miniAMR provides up to 16 different
types of objects (both solid and surfaces), which include spheroids, cylinders,
rectangles and planes. These objects can interact with the domain in different
ways: moving at a constant speed, bouncing on the boundaries of the outside
prism and growing on the X, Y or Z directions. Their positions determine the
regions of the domain that need more precision and, therefore, a finer grid.

To simplify the communications, miniAMR forces neighboring blocks to be
at distance 1 in the refinement level. This means that every face of a 3D block is
a neighbor of a whole face (at the same refinement level), four other faces (which
are finer) or a quarter of another face (which is coarser). A sample domain at a
given time step can be seen in Fig. 1. All these blocks occupy the same bytes in
memory; when refinement happens for a block, the resolution is doubled in each
dimension by replacing that block by 8 new blocks.

The sample computations are modeled using different stencil algorithms,
applying them to the different variables that are defined. For simplicity, we will
focus on the 7-point stencil, where each discrete point is the average of itself and
its six neighbor points in 3D space (up, down, north, south, east, west).

2.1 Baseline Parallelization of the miniAMR Code

To understand the changes to the code for taskification in Section 3, we first
introduce how the application works originally according to the source code
available in the Mantevo repository [12].

The initial, coarsest grid is given by the number of MPI ranks in each dimension
and the number of initial blocks (grid cells) per MPI rank per dimension. The
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Algorithm 1: miniAMR main loop
foreach time step or simulation time finished do

foreach stage in time step do
foreach communication group do

communicate;
foreach variable in communication group do

stencil;
if time for checksum then

checksum;
validate checksum;

end
end

end
end
if time for refinement then

refine;
end

end

application does an initial allocation for all the blocks that can be used (limited
by a user-specified parameter). In the original code, this is implemented as an
array of structs, where each block struct contains a quadruple pointer to double
(i.e., double****) with the first indirection for the total amount of variables,
one indirection per dimension, and memory contiguity only in the Z axis. Each
dimension has two extra elements to allow for an extra face on each side of the
block to account for ghost values (as the values in the boundaries of neighbor
blocks are called in the miniAMR code). Blocks that are not in use are marked
as such so that they can be used in future refinements.

Algorithm 1 shows the pseudo-code of the main loop that is executed after
initialization. The main loop runs for a total number of time steps or a given
simulation time. This loop is divided in stages that start with the communications
between neighboring cells followed by the stencil updates, sometimes followed by
a checksum calculation. These pairs of communication and stencil are grouped
by a certain number of variables (communication group). For example, the
total number of variables is 40, while communications and stencil updates are
done in groups of 10 variables. Every few stages, the objects in the domain are
moved according to the parameters, the domain is refined/coarsened following
the settings, and the main loop starts again.

The communications are done for both local (intraprocess) and external
(interprocess) neighboring blocks, MPI non-blocking calls being used for the
second case. When the blocks are of the same size, the ghost values are simply
copied. If a face has four neighbors, because the neighbor grid is finer, the values
are replicated four times and the variables are divided by 4 to keep the total
value constant. Similarly, all ghost values received by the coarser face are added
up in groups of four to a single discrete point.
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Table 1. MiniAMR versions developed in this work

Label Description
Orig Original code from Mantevo repository with stencil parallel loop fixed
Orig-dyn Orig with dynamically scheduled comm
Loop Transformation of main data structure into contiguous array
Loop-dyn Loop with dynamically scheduled comm
Task-1 Data-flow parallelization of comm and stencil. Taskloop for checksum
Task-2 Data-flow parallelization of comm, stencil and checksum

When splitting a block in the refinement process, each original point is
replicated 8 times and its variables are divided by 8 in order to preserve the total
value, as when communicating. The coarsening process is equivalent: 8 blocks
are joined to form a coarser block, so the points are added up in groups of 8 to
form a coarser point.

3 Taskification of MiniAMR

Table 1 lists the versions developed in this work towards the taskification of
miniAMR using OpenMP. The parallelization of miniAMR in the reference code
of the Mantevo project is based on MPI and OpenMP. Message passing between
processes occurs mainly in the communication phase when the faces of blocks
(ghost values) are transferred in a process commonly known as halo exchange.
An MPI_AllReduce primitive coordinates all processes to calculate the overall
checksum. MPI is also used in other parts of the code outside of the main
phases that are outside of the scope of this analysis, such as a plotting phase to
visualize the simulated grid like the one shown in Fig. 1. OpenMP is used in the
communication phase to exchange halos between threads, the computation phase
(stencil) and checksum calculation. The refinement phase is serial.

The first transformation of the code (labeled as Orig) is to correct the original
stencil OpenMP parallelization, which gives incorrect results as of February
14th, 2019 (the latest commit in the master branch at the time of writing). This
issue was communicated to miniAMR developers. Listing 1 shows the resulting
OpenMP annotation on the 7-point stencil code.

The taskification strategy is that a task communicates (comm) or computes
(stencil) the variables of one block. It is beneficial for the data belonging to
the variables of a block to be contiguous in memory so task dependencies can
be expressed as array sections. To prepare the code towards taskfication, the
second transformation is to change the main data structure from a quadruple
pointer (double****) with disaggregated arrays for each block, variable, and X,
Y and Z dimensions, into a contiguous array (double*). This version (labeled as
Loop) is our reference loop-parallel version using worksharing-loop constructs
only. Having a contiguous array improves performance over the original code
thanks to better prefetching coverage and accuracy due to improved locality. To
isolate this improvement from that provided by taskification, the performance
results in Section 5 are normalized to Loop.
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#pragma omp parallel for default(shared)
//loop over blocks
for (int in = 0; in < sorted_index[num_refine +1]; in++) {

block *bp = &blocks[sorted_list[in].n];
block3D_t array = (block3D_t )&bp->array[var*block3D_size ];
double work[x_block_size +2][ y_block_size +2][ z_block_size +2];
memcpy(work , array , sizeof(work )); //save in temp storage
for (int i = 1; i <= x_block_size; i++)

for (int j = 1; j <= y_block_size; j++)
for (int k = 1; k <= z_block_size; k++)

array[i][j][k] = (work[i-1][j ][k ] +
work[i ][j-1][k ] +
work[i ][j ][k-1] +
work[i ][j ][k ] +
work[i ][j ][k+1] +
work[i ][j+1][k ] +
work[i+1][j ][k ])/7.0;

}

Listing 1. 7-point stencil code with correct worksharing construct.

double *barray = bp->array;
double *barray1 = bp1 ->array;
#pragma omp task \

depend(inout: barray[start*bsize:num_comm*bsize], \
barray1[start*bsize:num_comm*bsize ]) \

firstprivate (...) default(none)
{

//loop over variables in communication group
for (int m = start; m < start+num_comm; m++) {

block3D_t array = (block3D_t )& barray[m*bsize ];
block3D_t array1 = (block3D_t )& barray1[m*bsize];
// exchange face ghost values
for (int j = 1; j <= y_block_size; j++)

for (int k = 1; k <= z_block_size; k++) {
array1[x_block_size +1][j][k] = array [1][j][k];
array [0][j][k] = array1[x_block_size ][j][k];

}
}

}

Listing 2. Communication task between blocks at the same refinement level. bp and
bp1 are pointers to the blocks exchanging faces. bsize is the 3D block size. Blocks are
laid out contiguously for each variable

The third version (labeled Task-1) is the taskification of the communication,
stencil and checksum phases on top of Loop. In the original code, the loop in the
communication phase traverses all blocks and each iteration performs ghost value
exchanges between a block face and a neighbor face at the same or different refine-
ment level. This loop is distributed across threads with an omp parallel for
construct. In this taskification, this worksharing-loop construct is removed and a
task is defined for each exchange inside the loop. Listing 2 shows the task code for
a face exchange at same refinement level. Tasks read and write to a part of the
block and the dependence is set for the whole block. This could be improved by
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#pragma omp taskwait
// original: #pragma omp parallel for reduction (+: sum)
#pragma omp taskloop
for (int in = 0; in < sorted_index[num_refine +1]; in++) {

block *bp = &blocks[sorted_list[in].n];
double block_sum = 0.0;
block3D_t array = (block3D_t )&bp->array[var*bsize ];
for (int i = 1; i <= x_block_size; i++)

for (int j = 1; j <= y_block_size; j++)
for (int k = 1; k <= z_block_size; k++)

block_sum += array[i][j][k];
// update check sum

#pragma omp atomic
sum += block_sum;

}

Listing 3. Checksum task for Task-1 using taskloop

arranging halos with ghost values in separate arrays and having dependences only
on halos instead, or by adding a separate dependence for each halo and variable.
However, both of these solutions add complexity either to the data structure
or to the directive readability, so this is not included in the version evaluated
here. We expect support for multidependences [8, 17] in OpenMP 5.0 to help
with the directive readability issue (we must restrict this effort to OpenMP 4.5
features due to current compiler support). Stencil computations are taskified
with an inout dependence on the block they operate on, and therefore depend on
the previous communication tasks that write to that block. With this data-flow
dependence strategy, a pair of parallel and single directives surround the loop
iterating over the stages in the main loop, therefore removing the implicit barrier
between the communication and stencil phases that worksharing-loop constructs
in the original code imply.

At this point there is data flow between communication and stencil computa-
tion. Due to being inside a parallel-single pair, the worksharing-loop construct
around checksum executes serially on one thread. Given that checksum does not
execute on every iteration, this taskification uses a taskloop construct [15], which
executes the iterations of checksum over the blocks in tasks, and therefore has the
same implicit barrier after the checksum loop as the previous worksharing-loop
construct. Listing 3 shows the corresponding task code. To make sure prior tasks
complete before checksum, a taskwait primitive is placed before the checksum
task loop. The refinement phase is outside of the task region and therefore remains
serial as in the original code. Taskifying the refinement phase to overlap iterations
across timesteps is a potential improvement left for future work.

The fourth version (labeled as Task-2) builds on top of Task-1 and replaces
the taskloop-based taskification of checksum by data-flow using dependencies.
Listing 4 shows the task code. The loop iterating over the variables in the block
is brought inside the task and the partial checksum variable becomes an array
with an entry for each variable. This removes the taskwait before the checksum
phase and allows hoisting the checksum for a given block as soon as its stencil
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for (int in = 0; in < sorted_index[num_refine +1]; in++) {
block *bp = &blocks[sorted_list[in].n];
double *barray = bp->array;

#pragma omp task \
depend(in: barray[var*bsize:number*bsize]) \
firstprivate (...) default(none)
{

//loop over variables in communication group
for (int v = var; v < var+number; ++v) {

block3D_t array = (block3D_t )& barray[v*bsize];
double block_sum = 0.0;
for (int i = 1; i <= x_block_size; i++)

for (int j = 1; j <= y_block_size; j++)
for (int k = 1; k <= z_block_size; k++)

block_sum += array[i][j][k];
// update check sum for a given variable

#pragma omp atomic
sum[v] += block_sum;

}
}

}
#pragma omp taskwait

Listing 4. Checksum task for Task-2 using data-flow dependences

is complete. The taskwait moves down after the creation of checksum tasks so
checksum validation happens once all checksum tasks are complete.

Given the intrinsic load imbalance of the communication phase due to different
block communications happening at different refinement levels, Table 1 includes
two more versions of the code. Orig-dyn and Loop-dyn use dynamic scheduling by
adding the clause schedule(dynamic) to the parallel loop in the communication
phase to mitigate this imbalance and have another point of comparison between
statically-scheduled loops and tasking.

This effort covers the shared memory portion of the application by replacing
loop-level parallelization of communication, stencil and checksum with task-
level parallelization to compare both models. The taskification of the MPI part
promises further improvements given that it already uses asynchronous message
passing. The evaluation of MPI communication tasking is left as future work.

4 Experimental Methodology

The experiments focus on comparing the worksharing-loop parallel and task-based
implementations of miniAMR described in Section 3. As in prior work [1], they
are run on multiple systems with different architectural and microarchitectural
features and using different OpenMP C/C++ compiler and runtime systems
to quantify the sensitivity to the underlying system features and runtime im-
plementation. Table 2 shows the testbed systems and compilers used in this
work.

We run miniAMR with multiple variations of input parameters that affect
different parts of the application. We test multiple block sizes and number of
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Table 2. Systems used for evaluation

SYSTEM
Name Marvell ThunderX2 IBM POWER9 Intel Skylake-SP AMD EPYC
Part no. CN9975 8335-GTH Xeon Platinum 8160 7401P
Processors 2 2 2 1
Memory 16xDDR4-2666 16xDDR4-2666 12xDDR4-2666 8xDDR4-2666

PROCESSOR
Cores 28 20 24 24
L1D cache 32KB/core 32KB/core 32KB/core 32KB/core
L2 cache 256KB/core 512KB/2 cores 1MB/core 512KB/core
L3 cache 32MB 120MB 33MB 64MB
NoC Ring - Mesh 4-die MCM

SOFTWARE

Compilers GNU-8.2 GNU-8.1 GNU-8.1 GNU-8.2
Arm 19.1 IBM XL 16.1 Intel 19.0

variables, which directly affect parallel work duration - often a performance
limiting factor [9, 13]. The default block size in miniAMR is 10× 10× 10 and
previous papers used 64×64×64 [14]. We use 16×16×16 as a reasonable input and
8×8×8 as a deliberately small block size to stress tasking overheads. The default
number of variables is 40. We use 40 and 160 as a deliberately large input to
isolate tasking overheads. We test checksum frequencies of one every five, and one
every ten stages, which affects tasking look ahead as checksum validation implies a
barrier. We test 10 and 40 stages per time step which affects refinement frequency
—more stages per time step means less relative time spent in the refinement
phase. The number of overall refinements is 4, maximum blocks is 3000 and
simulation starts with 1 block. The simulated object, position, direction and
speed is defined with parameters: –num_objects 1 –object 2 0 -1.1 -1.1
-1.1 0.060 0.060 0.060 1.1 1.1 1.1 0.0 0.0 0.0. The memory footprint
of these runs is between 900MB and 20GB.

Experiments compare the execution time of the multiple variants (lower is
better) varying the number of OpenMP threads in one MPI rank. The execution
time of each phase is measurable only for the worksharing-loop versions, and
therefore not relevant in this study because when global synchronizations are
removed the execution of multiple phases overlap. The executions are done
multiple times to mitigate variation across runs. Most systems show a small
variation between runs, so one of them is shown here except for EPYC. This
system showed the largest variation, so experiments were run 10 times and the
results shown are the average after removing outliers (±2× standard deviation).

5 Performance Evaluation

Figure 2 shows the normalized execution time (lower is better) of the multiple
implementations of miniAMR, each subplot corresponding to a different platform,
and each cluster of bars being for a different number of threads. All results
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Fig. 2. Execution time of multiple miniAMR implementations on testbed systems;
normalized to Loop

are using the GNU compiler and normalized to the Loop implementation. The
parameters for this execution are: checksum frequency is every 5 stages, number
of refinements is 4, blocks are 16×16×16, with 40 variables and 40 stages per
timestep. We focus on this configuration as it is a representative input after
discussion with application developers. A discussion of the performance variations
of sweeping parameters is included later in this section.

In all cases, Loop is faster than the original version of the code (Orig) because
of improved locality while accessing the main data structure, which is a contiguous
array instead of being segregated per dimension. The two task implementations
are generally better than the Loop version due to load imbalance mitigation in
the communication phase and, for the larger core counts, also the stencil phase.
Loop-dyn also improves over Loop due to better load balancing and outperforms
tasking in some cases. However, in most cases, tasking is superior to dynamically-
scheduled loops due to the serial portion in between parallel loops becoming
increasingly important with increasing thread counts (Amdahl’s Law).

When crossing socket or die boundaries (e.g., 56 cores in ThunderX2 are in
two sockets, see Table 2), the dynamically-scheduled configurations (Orig-dyn,
Loop-dyn, Task-1 and Task-2) show worse performance than statically-scheduled
ones (Orig and Loop) in most cases. This is due to a large drop in performance
of execution of both stencil and communications due to NUMA/NUCA effects.
Static scheduling suffers heavily from load imbalance at the large core counts
tested across sockets but has better caching behavior due to the same blocks being
processed in the same threads across stages. With dynamic scheduling, each block
is processed in potentially different threads across stages. The result is that the
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Fig. 3. Execution timelines of Loop (left) and Task-2 (right). White color is idle time

drop in instructions per cycle (IPC) on each thread for static scheduling is smaller
than for dynamic scheduling when going from one socket to two sockets. In the
case of EPYC, this is noticeable already at 12 threads because only 6 threads
are co-located within the same die so over 6 threads is already a cross-chiplet
execution paying larger NUMA latencies. Given the lack of performance counters
that measure accesses to remote NUMA domains in the evaluated platforms, we
plan to further analyze the impact of cross-socket/cross-chiplet accesses using
simulated platforms in future work.

Figure 3 shows a timeline of the Loop (left) and Task-2 (right) versions
showing execution of parallel loops and tasks, respectively, on the 28 threads
of one ThunderX2 socket. Both timelines show the same duration. In the Loop
timeline, light green is communication and turquoise is stencil compute. In the
Task-2 timeline, the colors are the same and dark purple refers to checksum tasks.
The Loop timeline shows a clear imbalance across threads in the communication
phase, with certain threads consistently doing less work than others due to working
on blocks at different refinement levels. The Task-2 timeline shows communication,
stencil and checksum tasks concurrently executing as they become ready, leading
to incidental locality improvement and little idle time. This incidental locality
improvement happens more often with lower thread counts (4-8). Some consumer
tasks execute faster due to executing back-to-back with their producer, e.g.,
communications of a block happening right after its stencil computation, or vice
versa. In the absence of a locality-aware scheduler, this is less likely on larger
thread counts and we observe a larger drop in task performance.

Looking across systems, the Task-2 version results in over 90% useful time
on threads, i.e., communication/stencil/checksum, with a few threads achieving
just over 80% utilization due to task creation time not being accounted as useful.
The Loop version gets a lower utilization of between 40% and 80%. The threads
that spend more than half of the time idle are those that repeatedly operate on
blocks at the lower refinement levels.

Figure 4 shows the normalized execution time on ThunderX2 using Arm
Compiler, on POWER9 using IBM XL, and on Skylake-SP using Intel compiler.
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Fig. 4. Execution time with proprietary compilers: Arm Compiler on ThunderX2 (left),
IBM XL on POWER9 (middle) and Intel Compiler on Skylake-SP (right)

The tasking versions achieve similar gains on ThunderX2 with the exception
of dual socket which performs better. On POWER9, tasking gets smaller gains
and Loop-dyn performs the same in certain thread counts. On Skylake-SP, the
tasking advantage over the loop-parallel versions is even larger than with GNU.

Testing other application parameters to verify the sensitivity of this analysis
showed some variations in the results, but they do not change the conclusions
above. Going to arbitrarily small 8×8×8 blocks to stress task creation overhead,
indeed shows smaller benefit of the task versions and they scale worse overall,
especially across sockets where they perform significantly worse, but still work
better than Loop within single socket cases. Going to 160 variables to isolate
task creation overhead, and a checksum frequency of 10 for larger task-scheduling
look-ahead, shows a bit better results for tasking but not significantly better than
the ones using 40 variables or a checksum frequency of 5. Going to a checksum
frequency of 10 instead of 5 also shows a bit better results for tasking and the
benefit of Task-2 over Task-1 is also larger.

6 Conclusion

The benefits of tasking come mainly from a higher level view of parallelization by
the programmer. Introducing asynchrony by parallelizing across program phases
enables a higher utilization of threads thanks to removing global synchroniza-
tions, not having serial code between loops and, compared to static scheduling,
avoiding load imbalance. Due to the lack of locality-aware scheduling in the tested
runtimes (to the best of our knowledge), locality improvements by consumer
tasks executing after producer tasks was incidental. Also, tasking suffers from
worse NUCA/NUMA behavior because tasks operating on the same blocks may
execute on different threads across sockets and chiplets. Our experiments suggest
that locality/affinity semantic extensions for tasking in OpenMP have potential
for significant performance improvement and scaling across NUMA domains if
paired with balanced data allocation.

Parallelizing across program phases requires a mindset change if the pro-
grammer tends to parallelize loops or small sections after having parallelized
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at the MPI level. This strategy of focusing on small code portions when paral-
lelizing with OpenMP limits scaling because sections between parallel regions
remain serial. Tasking helps think in terms of larger code sections thanks to task
dependences—a task can execute anytime during the task region as soon as its
dependencies are satisfied.

A potentially-beneficial extension to the OpenMP standard for this taskifica-
tion effort would have been the ability to specify dependences in taskloops. This
way the Task-2 implementation could have been written in a easier and clearer
way building on top of Task-1 code. This is an extension that is on-going work
by the OpenMP committee and this paper shows a potential use case for it.

Lastly, we encountered several compiler issues with tasks that were reported
to developers. Some compilers failed to compile certain constructs or generated
incorrect results. These issues did not happen with worksharing-loop constructs,
which shows the different maturity of both models.
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