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Abstract— Induction motor drives supplied from diode 
front-end rectifiers are commonly used in industrial 
applications due to their low cost and reliability. However, 
the two-quadrant operation of such a topology makes the 
regenerative braking impossible. Braking resistors can be 
used to dissipate the braking power and provide enhanced 
braking capability, but additional hardware is then 
necessary. Alternatively, the braking power can be 
dissipated within the inverter/motor by control software 
reconfiguration. In this scenario, the additional degrees of 
freedom of multiphase drives can be used to increase the 
system losses without disturbing the flux and torque 
production. Experimental results confirm the possibility to 
enhance the braking capability of six-phase drives with 
only few changes in the control scheme.   

 
Index Terms—Multiphase induction motor drives, 

braking methods, field oriented control. 

I. INTRODUCTION 

he only efficient method to decelerate an induction motor is 

to operate in regenerative braking mode, sending the 

braking power back to the mains [1]. Nevertheless, 

regenerative braking requires bidirectional power flow, which 

is typically achieved using active front-end rectifiers and a 

back-to-back arrangement of voltage source converters 

(VSCs). Even though this topology is commonly used in 

high-power applications (traction and wind energy systems 

[2-5], to name a few), in many induction motor drives the use of 

diode front-end rectifiers is preferred due to the lower cost and 

improved reliability [6]. In such a case, the braking power  
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cannot be delivered to the grid and needs to be absorbed 

somewhere. For dissipation purposes, it is possible to add an 

electronically controlled braking resistor across the dc-link, 

but it increases the cost, complexity and size of the drive [7]. 

Aiming to eliminate the power electronic components and 

electronic control circuits associated to this braking unit, 

different studies have investigated the braking capability of 

the drive without additional hardware [7-9, 12-13]. The main 

problem during rapid braking transients is that the kinetic 

energy of the power train flows to the dc-link. If the energy 

cannot be delivered back to the grid, then it increases the dc-

link voltage. To avoid prohibitive overvoltages in the dc bus, 

the braking power needs to be reduced and this slows down 

the deceleration process.  
 

 In this scenario, there is only one possible solution to 

enhance the braking power and speed up the deceleration 

process: to increase the system losses. Even though copper 

losses can be relatively small in high-power high-efficiency 

systems, they can significantly help the braking process in 

low- to medium-power induction motor drives [6-7]. 

Following this procedure, the drive serves itself as a virtual 

braking resistor, dissipating the braking power within the 

inverter/motor. The dc-braking [7] or the high-slip braking [8] 

are examples of strategies that aim to increase the braking 
torque by increasing the system losses. However, these 

methods are focused on stopping the motor rather than 

obtaining a high-performance braking operation. The rotor 

flux is very small in both cases and this complicates the quick 

shift from braking to motoring mode of operation.  

 High performance braking methods are typically based on 

field oriented control (FOC) with some modifications to allow 

the generation of extra losses when requested. The most 

popular method is the flux braking, which increases the 

reference flux of the machine to induce extra losses and allow 

a controlled braking process [6-7, 9]. Interestingly enough, the 

strategy during braking is to make the motor as inefficient as 
possible within physical limits. While the flux is typically 

reduced in the base speed region to improve efficiency [10-

11], the flux should be increased during braking to worsen the 

efficiency and thus decelerate the motor faster. However, high 

flux values over-magnetize the machine leading to magnetic 

noise in the base speed region and overvoltages in the field-

weakening region [12]. The injection of current harmonics to 
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induce losses has also been suggested in [13], but torque 

ripples become inevitable resulting in poor braking 

performance. A better performance is obtained by injecting a 

high-frequency square-wave superimposed to the d-current in 

such a manner that the impact on the torque ripple is 

minimized [12]. The control scheme is however complicated 

and it must be carefully designed to avoid coupling of the loss 

controller with the drive dynamics.  

A common problem in all braking proposals for three-phase 

drives is that copper losses are increased by manipulating d-q 

currents and this causes disturbance in the flux and torque of 
the machine to some extent. A different situation is found in 

multiphase induction motor drives, where the phase 

redundancy naturally provides additional degrees of freedom 

[14-16]. Apart from the d-q currents, the vector space 

decomposition (VSD) [17] provides additional components in 

secondary planes, which are typically referred to as x-y 

components. These components allow the post-fault operation 

without extra hardware, and this fault tolerance is highly 

appreciated in safety-critical low-power applications such as 

in aircraft [18-20] or electric vehicle actuators [21]. While this 

capability is known from the early research studies in 

multiphase drives, other innovative uses for the new degrees 
of freedom have also appeared in recent times [6, 14, 22-24]. 

Since the braking mode of operation requires three degrees of 

freedom to independently regulate flux, torque and losses, an 

innovative use of the x-y currents is suggested in [25] to 

intentionally generate the losses.  This induced inefficiency in 

turn helps the braking process in low-power drives with diode 

front-end rectifiers and means that the dynamic braking 

chopper, normally used in inverter fed drives, could be 

dispensed with. In higher power machines the stator resistance 

is typically lower but the current is higher. At the end of the 

day what matters is not the value of the stator resistance itself 

but the ratio of the copper losses (∝ 𝑅𝑠𝐼
2) to the rated power 

of the machine. As the power increases, this ratio decreases 
because machines with higher power ratings typically have 

higher efficiency.  Consequently, the method is generally valid 

for any power rating, but in the low-to-medium power range 

(say kW-range) the braking enhancement is higher and more 

effective than in the high-power range (say MW-range; 

however, in very high power region the braking is usually 

regenerative, achieved with a back-to-back converter 

connection). It is worth highlighting in any case that this 

feature is common to all methods that use the loss 

manipulation to help the braking process (e.g. in the loss 

manipulation strategy incorporated in DTC-based ABB drives 
[6] or those suggested in [7, 9, 12], to mention a few). 

II. BACKGROUND OF THE BRAKING PROCESS IN 

INDUCTION MOTOR DRIVES 

The equation of motion of an induction motor connected to 

a certain load is (assuming motoring convention further on): 

𝑇𝑒 − 𝑇𝐿 = 𝐽
𝑑𝜔𝑚
𝑑𝑡

+ 𝐵𝜔𝑚  (1) 

where 𝑇𝑒  is the electrical torque, 𝑇𝐿  is the load torque, 𝐽 is the 

inertia of the power train, 𝜔𝑚 is the rotational angular speed of 

the motor and 𝐵 is the friction coefficient. If the machine is 

operating with rated load, then the load torque is rated and this 

helps the deceleration process. However, if the load torque is 

low or is speed dependent (a typical characteristic is quadratic 

dependence), the deceleration process becomes quickly far too 

slow. It is therefore customary to speed it up in a controlled 

manner by using negative values of the electrical torque 

(𝑇𝑒 < 0). Fig. 1 represents this mode of operation with both 

electrical and load torque opposing the rotational direction to 

speed up the deceleration process.  This implies in turn that 

the direction of the active power is reversed (Fig. 1) and the 

braking process takes place with 𝑃𝑠ℎ𝑎𝑓𝑡 < 0. This active 

power, simply referred to as the braking power from now on, 

flows through the motor and inverter and finally reaches the 

dc-link (𝑃𝐷𝐶). In the cases when 

i. the drive is equipped with a diode front-end rectifier 

(Fig. 1) or 

ii. the drive has an active front-end rectifier but there is 

voltage dip in the grid due to a fault 

the power cannot be delivered back to the grid and the dc-link 

voltage (𝑉𝐷𝐶) increases in an uncontrolled manner.  

Since overvoltages in the dc-link can quickly become 

prohibitive, it is necessary to brake the motor with 𝑃𝑠ℎ𝑎𝑓𝑡 < 0 

(as in Fig. 1) but maintain 𝑃𝐷𝐶 > 0 (opposite direction as in 

Fig. 1). This can only be achieved by increasing the inverter 

and motor losses. A traditional method, commonly referred to 

as dc-braking, is to operate at zero stator frequency. Since the 

stator flux does not rotate, the air-gap power is zero (𝑃𝛿 = 0), 

guaranteeing that the dc-link voltage is not increased (𝑃𝐷𝐶 >
0). Unfortunately, only rotor losses contribute to the braking 

process because the inverter and stator losses are not provided 

from the motor but from the grid side (𝑃𝑠 > 0), resulting in a 

low braking power. Additionally, the deceleration is done in 

an uncontrolled manner, so it can be regarded as a stopping 

procedure rather than a high-performance braking method. A 

higher braking power is obtained if the stator power is zero 

(𝑃𝑠 = 0) since the stator copper losses are now provided from 
the machine and thus help the deceleration process [7-8]. A 

solution for zero stator power has been suggested in [8] 

operating at high-slip, but the solution is not integrated in a 

high-performance control scheme. Furthermore, the low flux 

found in this solution leads to poor dynamic performance and 

low iron losses. The other solution for 𝑃𝑠 = 0 corresponding to 

low-slip operation is explored in [7], where a flux-braking 

approach is followed. As in [12], the braking method is 

integrated in a FOC-type strategy and losses are increased by 

injecting higher values of the d-current. Flux-braking methods 
however tend to overmagnetize the machine and lack voltage 

capability in the high-speed region (especially in the field-

weakening region). Aiming to overcome such limitations, 

another high-performance braking method is to maintain the 

rated flux using constant average d-current but increase the 

copper losses using a high-frequency square-wave d-current 

injection [12]. Either the flux and/or torque are however 

disturbed in the aforementioned methods. To summarize, 

some desirable features of a braking strategy would be: 

 The dc-link voltage should be kept below its limit. 
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Fig. 1. Scheme of the power flow during the braking process in an induction motor drive with diode front-end rectifier. Blue arrows for power flow (negative 

values in motoring convention) and red arrows for losses. From left to right: 𝑃𝐷𝐶 ≡ active power flowing to the dc-link, 𝑃𝑖𝑛𝑣 ≡ losses in the inverter, 𝑃𝑠 ≡ 

electrical power supplied to the stator, 𝑃𝑐𝑢,𝑠 ≡ stator copper losses, 𝑃𝐹𝑒 ≡ iron losses (neglecting rotor), 𝑃𝛿 ≡ air-gap power, 𝑃𝑐𝑢,𝑟 ≡ rotor copper losses, 𝑃𝑚𝑒𝑐 ≡ 

mechanical power, 𝑃𝑓𝑟 ≡ windage and friction losses, 𝑃𝑠ℎ𝑎𝑓𝑡 ≡ mechanical power at the motor shaft. 

 System losses should be maximized, within voltage 

and current limits, to increase the braking power. 

 All losses should be supplied by the machine, not by 

the inverter. 

 The braking method must be integrated in a high-

performance control and provide good dynamics 

when shifting from braking to motoring modes. 

 Flux and torque should not be distorted by the loss 

manipulation strategy. 

 Control scheme changes should be minimized. 

III. A BRAKING STRATEGY FOR ASYMMETRICAL SIX-PHASE 

INDUCTION MOTOR DRIVES 

A. Losses in Asymmetrical Six-phase Induction Motors: 

Using the generalized Clarke’s transformation [𝑇] in its 

power-invariant form [5]: 

[𝑇] =
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  (2) 

[𝑖𝛼𝑠  𝑖𝛽𝑠  𝑖𝑥𝑠  𝑖𝑦𝑠  ]
𝑇
= [𝑇] ∙ [𝑖𝑎1 𝑖𝑏1 𝑖𝑐1 𝑖𝑎2 𝑖𝑏2 𝑖𝑐2]

𝑇  

the VSD-based electrical equations of an asymmetrical six-

phase induction motor with distributed windings can be 
obtained from the phase variable model in the stationary 

reference frame as: 

𝑣𝛼𝑠 = (𝑅𝑠 + 𝐿𝑠
𝑑

𝑑𝑡
) 𝑖𝛼𝑠 +𝑀

𝑑

𝑑𝑡
𝑖𝛼𝑟  

 

 

 

(3) 

𝑣𝛽𝑠 = (𝑅𝑠 + 𝐿𝑠
𝑑

𝑑𝑡
) 𝑖𝛽𝑠 +𝑀

𝑑

𝑑𝑡
𝑖𝛽𝑟  

𝑣𝑥𝑠 = (𝑅𝑠 + 𝐿𝑙𝑠
𝑑

𝑑𝑡
) 𝑖𝑥𝑠        𝑣𝑦𝑠 = (𝑅𝑠 + 𝐿𝑙𝑠

𝑑

𝑑𝑡
) 𝑖𝑦𝑠  

0 = (𝑅𝑟 + 𝐿𝑟
𝑑

𝑑𝑡
) 𝑖𝛼𝑟 + 𝜔𝑟𝐿𝑟𝑖𝛽𝑟 +𝑀

𝑑

𝑑𝑡
𝑖𝛼𝑠 +𝜔𝑟𝑀𝑖𝛽𝑠  

0 = (𝑅𝑟 + 𝐿𝑟
𝑑

𝑑𝑡
) 𝑖𝛽𝑟 −𝜔𝑟𝐿𝑟𝑖𝛼𝑟 +𝑀

𝑑

𝑑𝑡
𝑖𝛽𝑠 − 𝜔𝑟𝑀𝑖𝛼𝑠  

𝑇𝑒 = 𝑝𝑀(𝑖𝛽𝑟𝑖𝛼𝑠 − 𝑖𝛼𝑟𝑖𝛽𝑠) 

 

where Ls = Lls + 3Lm, Lr = Llr +3Lm, M = 3Lm, Lm is the mutual 

inductance between stator and rotor phases and ωr is the rotor 

electrical speed (ωr = pωm, p being the pole pair number).  

It can be observed from (3) that the torque production is 

limited to the α-β subspace, whereas the currents of the x-y 

subspace only generate copper losses in the stator. 

Additionally, α-β and x-y planes are orthogonal and can be 

controlled independently. It is assumed that the six-phase 

machine has two isolated neutral points, so zero sequence 

currents are omitted from the analysis because they cannot 
flow. For control purposes, the α-β subspace is typically 

rotated using the Park rotational transformation: 

[𝐷] = [
𝑐𝑜𝑠𝜃𝑠 𝑠𝑖𝑛𝜃𝑠
−𝑠𝑖𝑛𝜃𝑠 𝑐𝑜𝑠𝜃𝑠

] (4) 

that provides the d and q components, used for flux and torque 

regulation, respectively. 

Core losses caused by eddy currents and hysteresis, 

neglected in (3), are dependent on the stator flux and 

frequency. Consequently high iron losses are obtained if the 

flux is maintained at rated value by setting 𝑖𝑑𝑠
∗ = 𝑖𝑑𝑠𝑛 . This 

also ensures good dynamic performance of the drive when 

transiting from braking to motoring mode of operation. 

Copper losses depend on the stator currents in the form: 

𝑃𝑐𝑢 = 𝑃𝑐𝑢,𝑠 + 𝑃𝑐𝑢,𝑟 = 𝑅𝑠(𝑖𝑑𝑠
2 + 𝑖𝑞𝑠

2 + 𝑖𝑥𝑠
2 + 𝑖𝑦𝑠

2 ) + 𝑅𝑟𝑖𝑞𝑠
2  (5) 

Since either the torque loop of the field oriented control or 

the limitations imposed on the braking power would set the q-

current reference (𝑖𝑞
∗), both d and q currents are fixed by the 

regulation of flux and torque, respectively. Fortunately, in the 

asymmetrical six-phase machine one can still manipulate the 

copper losses by proper injection of the x-y currents. 

B. Injection of x-y currents for loss manipulation: 

The main idea to perform a safe braking is to divert the 

energy that would typically be delivered to the dc-link by 
manipulating the x-y losses. Let us consider the qualitative 

example of a machine that is driven at speed 𝑛1 and it is 

decelerated down to 𝑛2 in a ramp-wise manner (Fig. 2a). 

When the machine starts the deceleration at time 𝑡0, the dc-

link power is quickly reversed to absorb the kinetic energy 

(Fig. 2b), and this causes the rise of the dc-link capacitor 

voltage. Alternatively, the energy that would be delivered to 
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the dc-link (shaded area in Fig. 2b) can be dissipated as x-y 

copper losses (shaded area in Fig. 2d). This keeps the dc-link 

power always positive, as shown in Fig. 2c. At time 𝑡1 the 

deceleration process comes to an end and the injection of the 

x-y current is no longer necessary (Fig. 2d). The power profile 

of Fig. 2b is the subtraction of those in Fig. 2c and 2d, and for 

this reason the dynamics during the transient are not altered.  

From the machine model (3) it can be noted that:  

i. the injection of x-y currents does not disturb the flux 

and torque; 

ii. the regulation of the x-y currents can be done 
independently from the flux/torque control (due to 

the orthogonality of - and x-y subspaces); 

iii. the x-y currents can be injected in a quick manner due 

to a low electrical time constant;  

iv. low x-y voltage is required for the current injection 

because the impedance in the x-y plane is low. 

Consequently, the loss control through the x-y 

currents becomes an ideal candidate to improve the 

braking process. 

The amount of x-y currents that can be tolerated directly 

depends on the current and voltage constraints of the system. 

Current constraints are typically more restrictive at low speed 

whereas prohibitive voltages are found at high speed, 
especially in the field-weakening region. This work focuses on 

the operation in the base speed region and will only consider 

current constraints. The stator currents are limited by the 

ratings of both the motor and inverter. However, the induction 

motors can handle typically up to four times their nominal rms 

currents (𝐼𝑛) for short periods of time. This overload 

capability is normally quantified by manufacturers when the 

induction motor operates in interment duties and during direct 

online (DOL) starting. Considering that the x-y current 

injection is performed only during sudden decelerations, the 
current limit in this transient state is practically constrained by 

the inverter rating [8]. Since inverters typically incorporate 

some overload capability for short-time acceleration at higher 

than rated torque, it is likely that the maximum current that 

can be tolerated during the braking transient is higher than 

rated (𝐼𝑚𝑎𝑥 = 𝛼𝐼𝑛, 𝛼 > 1), still keeping the motor on the safe 

side with no concerns about thermal effects. Considering that 

copper losses increase with the square of the current, it is 

important to take advantage of such overload transient 

capability (e.g. 𝛼 = 1.5 results in 225% copper losses). Some 
current capability is reserved for the flux and torque 

production with d-q currents, but the x-y currents can be 

injected up to the limit set by the maximum per leg rms 

inverter current (𝐼𝑚𝑎𝑥): 

𝑖𝑠𝑥
2 + 𝑖𝑠𝑦

2 ≤ 6𝐼𝑚𝑎𝑥
2 − 𝑖𝑠𝑑

2 − 𝑖𝑠𝑞
2  (6) 

An important remark is that the current limit in (6) is only 

valid for the case when phase currents are balanced. Although 

this is the standard case in motoring operation due to the zero 

value of x-y currents, it may not hold true if x-y currents are 

not injected in a proper manner. This would provide a 

suboptimal   solution   and  consequently  needs  some  further  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 2. Qualitative explanation of the energy dissipation during the braking 

process: (a) Speed, (b) Dc-link power with no x-y energy dissipation, (c) Dc-

link power with x-y energy dissipation, (d) x-y injection during the braking 

transient. 

 

analysis. Considering the inverse of the Clarke’s 

transformation matrix, the phase currents can be written as:  

𝑖𝑎1 = (𝑖𝛼𝑠 + 𝑖𝑥𝑠) √3⁄   

 

 

 

(7) 

𝑖𝑏1 = (−
1

2
𝑖𝛼𝑠 +

√3

2
𝑖𝛽𝑠 −

1

2
𝑖𝑥𝑠 −

√3

2
𝑖𝑦𝑠) √3⁄  

𝑖𝑐1 = (−
1

2
𝑖𝛼𝑠 −

√3

2
𝑖𝛽𝑠 −

1

2
𝑖𝑥𝑠 +

√3

2
𝑖𝑦𝑠) √3⁄  

𝑖𝑎2 = (
√3

2
𝑖𝛼𝑠 +

1

2
𝑖𝛽𝑠 −

√3

2
𝑖𝑥𝑠 +

1

2
𝑖𝑦𝑠) √3⁄  

𝑖𝑏2 = (−
√3

2
𝑖𝛼𝑠 +

1

2
𝑖𝛽𝑠 +

√3

2
𝑖𝑥𝑠 +

1

2
𝑖𝑦𝑠) √3⁄  

𝑖𝑐2 = −(𝑖𝛽𝑠 + 𝑖𝑦𝑠) √3⁄   
 

   ( .  . )

  ( )𝑡0 𝑡1

1

0

𝑛2
    𝑖𝑛 

𝑛1

    ( .  . )

  ( )𝑡0 𝑡1

1

0

−0.5

       
      

    ( .  . )

  ( ) 0  1

1

0

−0.5

  0   

          ( .  . )

𝑡 (𝑠) 0  1

1

0

      
           



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 
Fig. 3. Control strategy. (a) Synchronous and anti-synchronous rotation of α-β and x-y current space phasors according to condition (7) with 𝛾 = 1, (b) Loss 

controller for x-y current reference generation, (c) Dc-link voltage controller and (d) Field oriented control (FOC) of the six-phase induction motor. 
 

A solution that satisfies the requirement of equal magnitude 

in phase currents is: 

𝑖𝑥𝑠 = 𝛾𝑖𝛽𝑠  (8) 
𝑖𝑦𝑠 = 𝛾𝑖𝛼𝑠  

where 𝛾 is a parameter that regulates the amount of current 

injection and provides the additional copper losses that are 

necessary for the braking process: 

𝑃𝑐𝑢 = 𝑃𝑐𝑢,𝑠 + 𝑃𝑐𝑢,𝑟 = (1 + 𝛾
2)𝑅𝑠(𝑖𝑠𝑑

2 + 𝑖𝑠𝑞
2 ) + 𝑅𝑟𝑖𝑞𝑠

2  (9) 

Equation (7) also implies that both the space phasors in the 

α-β subspace (𝑖�̅�𝛽𝑠 = 𝑖𝛼𝑠 + 𝑗𝑖𝛽𝑠) and in the x-y subspace 

(𝑖�̅�𝑦𝑠 = 𝑖𝑥𝑠 + 𝑗𝑖𝑦𝑠 = 𝛾(𝑖𝛽𝑠 + 𝑗𝑖𝛼𝑠)) rotate at fundamental 

frequency, but in opposite directions. While 𝑖�̅�𝛽𝑠 rotates in 

synchronous direction, 𝑖�̅�𝑦𝑠 rotates in anti-synchronous 

direction, as schematically indicated in Fig. 3a. 

It is worth noting that the injection of the x-y currents can 
be done with low values of the x-y voltages because the 

impedance of the x-y plane is low in distributed winding 

machines. The value of 𝐿𝑙𝑠 ≪ 𝐿𝑚 and for this reason |𝑍𝑥𝑦| ≪

|𝑍𝑑𝑞|. For the sake of example, with the machine parameters 

in [16] the value of |𝑍𝑥𝑦| at 50 Hz is only 6% of the no-load 

impedance. 

A. Design of the loss controller:  

It is firstly necessary to decide the frame of x-y currents 

where the control would be optimally performed. Since it has 

been  already  shown  that  the    condition of balanced operation 

(6) implies an anti-synchronous rotation of 𝑖�̅�𝑦𝑠, it follows that 

the choice of a synchronous reference frame using Park 

transformation [𝐷] would generate sinusoidal x-y currents at 

twice the fundamental frequency. This would require the use 
of controllers with a wide bandwidth or resonant controllers, 

which may complicate the control structure and tuning. 

Alternatively, the choice of an anti-synchronous reference 

frame using [𝐷]−1 provides constant x-y currents and allows 

the use of simple proportional-integer (PI) x-y controllers. By 

selecting a synchronous reference frame for d-q currents and 

an anti-synchronous reference frame for the x-y currents, the 

condition (8) is transformed into: 

𝑖𝑥𝑠
′ = 𝛾𝑖𝑞𝑠  

(10) 
𝑖𝑦𝑠

′ = 𝛾𝑖𝑑𝑠 

where 𝑖𝑥𝑠
′ and 𝑖𝑦𝑠

′ denote the x-y current components after the 

anti-synchronous rotation. 

Considering the relationship between components used in 

the VSD (d-q-x-y) and double d-q (d1-q1-d2-q2) approaches [5] 

𝑖𝑑𝑠 = √1 2⁄ (𝑖𝑑1𝑠 + 𝑖𝑑2𝑠)     𝑖𝑑𝑠 = √1 2⁄ (𝑖𝑑1𝑠 + 𝑖𝑑2𝑠)       (11) 

𝑖𝑥𝑠
′ = √1 2⁄ (𝑖𝑑1𝑠 − 𝑖𝑑2𝑠)    𝑖𝑦𝑠

′ = √1 2⁄ (𝑖𝑞2𝑠 − 𝑖𝑞1𝑠),     
the expression in (10) can be rewritten in terms of the d-q 

components of windings 1 and 2 as: 

𝑖𝑑1𝑠 =
𝑖𝑑𝑠 + 𝛾𝑖𝑞𝑠

2
     𝑖𝑑2𝑠 =

𝑖𝑑𝑠−𝛾𝑖𝑞𝑠
2

 
(12) 

𝑖𝑞1𝑠 =
𝑖𝑞𝑠 − 𝛾𝑖𝑑𝑠

2
    𝑖𝑞2𝑠 =

𝑖𝑞𝑠 + 𝛾𝑖𝑑𝑠
2

 
 

The condition (8) is a mathematical solution to obtain 

balanced current operation, but (12) provides a further insight 

into this solution with a clear physical meaning: in motoring 

operation (𝛾 = 0) the contribution of windings 1 and 2 to the 
flux and torque production is equal but for increasing values 

of 𝛾 winding 1 contributes more to the flux creation whereas 

winding 2 becomes torque-related. Consequently, phase 

currents remain balanced during braking but the nature of 

these currents is modified to worsen the efficiency, and this is 

reflected in the rise of x-y currents. 

The amplitude and phase shifting of the d-q phasors of 

windings 1 and 2 are: 

Six-phase
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|𝑖𝑑𝑞1𝑠| = |𝑖𝑑𝑞2𝑠| =
1

2
[(1 + 𝛾2)𝑖𝑑𝑠

2 + (1 + 𝛾2)𝑖𝑞𝑠
2 ]

1
2 

(13) 

𝜑12 =    
−1 (

𝛾𝑖𝑑𝑠 + 𝑖𝑞𝑠
𝑖𝑑𝑠 − 𝛾𝑖𝑞𝑠

) −    −1 (
𝑖𝑞𝑠 − 𝛾𝑖𝑑𝑠
𝛾𝑖𝑞𝑠 + 𝛾𝑖𝑑𝑠

) 

confirming that conditions (8) and (10) provide a balanced 

operation with variable phase shifting between the three-phase 
currents of windings 1 and 2.    

The limit (6) can now be expressed in terms of the current 

injection parameter 𝛾: 

𝛾 ≤ √
6𝐼𝑚𝑎𝑥
2

𝑖𝑑𝑠
2 +𝑖𝑞𝑠

2
− 1 (14) 

The second issue to consider is the instant when x-y currents 
should be injected. The actual instant when the power is being 

delivered to the dc-link, thus initiating the rise of 𝑉𝐷𝐶 , is when 

the dc-link power becomes negative (𝑃𝐷𝐶 < 0). Unfortunately, 

the determination of this condition requires the measurement 

of the dc-link current 𝐼𝐷𝐶, which is typically not incorporated 

in induction motor drives. Consequently, the proposed 

condition for the activation of the loss controller is the reversal 

of the stator power, that is, when 𝑃𝑠 < 0. The stator power can 

be expressed in terms of VSD variables as: 

𝑃𝑠 = 𝑣𝛼𝑠𝑖𝛼𝑠 + 𝑣𝛽𝑠𝑖𝛽𝑠 + 𝑣𝑥𝑠𝑖𝑥𝑠 + 𝑣𝑦𝑠𝑖𝑦𝑠 (15) 

Next, it is also necessary to decide the inputs and outputs of 

the controller. The variable 𝛾 from (8) and (10) is used as an 

output since it allows the rise of copper losses (9) and provides 

balanced operation (13). 𝑃𝑠 is selected as the input because the 

aim of the loss controller is to maintain the stator power above 

a certain threshold (typically 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0) to avoid dc-link 

power reversal. The controller includes a low-pass filter for 𝑃𝑠 
to provide smoother operation and an anti-windup PI 

controller with saturation set by (14). The designed loss 

controller is finally shown in Fig. 3b, which needs to be 

integrated in the FOC scheme. 

B. Overall control strategy:  

The complete control scheme is shown in Fig. 3. It 

comprises three different parts:  

 The field oriented control used for motoring mode of 

operation (Fig. 3d). This part of the control scheme uses a 
conventional scheme with an outer speed loop and inner 

control loops to regulate the VSD currents. The q-current 

reference is provided by the speed loop and the d-current 

reference is set to a constant value to operate at rated flux in 

the base speed region. The regulation of d-q currents is 

performed in the synchronous reference frame whereas the 

regulation of the x-y currents is performed in anti-

synchronous reference frame. PI controllers are used for 

both d-q and x-y components. The reference for the x-y 

currents is set by the loss controller of Fig. 3b. Inner current 

controllers provide the voltage references 𝑣𝑑𝑠
∗ , 𝑣𝑞𝑠

∗  and 

𝑣𝑥𝑠
′∗ , 𝑣𝑦𝑠

′∗  that are converted back to the stationary frame 

using Park [𝐷] and inverse Park [𝐷]−1 transfor-mations, 

respectively. Inverse Clarke transformation [𝑇]−1 is then 

used to obtain the phase voltage references that are finally 

fed to the carrier-based PWM stage. 

 The loss controller (Fig 3b), which is integrated in the FOC 

scheme to provide zero x-y current references in motoring 

operation (𝑃𝑠 > 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0) and non-zero values during 

braking (𝑃𝑠 < 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0). Since the loss controller 

already inputs a zero value when 𝑃𝑠 > 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0, there 

is no need to switch the controller off during motoring 

operation. This provides a simple and smooth 

activation/deactivation of the loss controller when required. 

 The loss controller, shown in Fig 3b, which is integrated in 
the FOC scheme to provide zero x-y current references in 

motoring operation (𝑃𝑠 > 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0) and non-zero 

values during braking (𝑃𝑠 < 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0). Since the loss 

controller already inputs a zero value when 𝑃𝑠 >
𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0, there is no need to switch the controller off 

during motoring operation. This provides a simple and 

smooth activation/deactivation of the loss controller when 

required.  

The voltage controller (Fig. 3c). Even though the loss 

controller of Fig. 3b will help to some extent the braking 

process, the loss generation capability is limited by (12). Once 

this saturation is reached, it is then necessary to include a dc-

link voltage controller to limit the amount of regenerative 

power that is being reversed. This limitation is simply done by 
a PI controller that takes the dc-link voltage error as an input 

and sets a limit for the q-current reference as an output [12]. 

IV. EXPERIMENTAL RESULTS 

A. Test bench:  

The different elements of the test rig that has been used for 

the experimental testing is shown in Fig. 4. The six-phase 
drive consists of an asymmetrical six-phase induction machine 

driven by conventional two-level three-phase VSCs from 

Semikron (SKS22F modules). Ac-time domain and stand-still 

with inverter supply tests [26-27] have been used to determine 

the parameters of the custom-built multiphase machine. Table 

I shows the induction motor drive parameters and rated values.  

The VSCs are connected to a single dc power supply and the 

control actions are performed by a digital signal processor 

(TMS320F28335 from Texas Instruments, TI). The control 

unit is programmed using a JTAG and the TI proprietary 

software Code Composer Studio.  

TABLE I 

INDUCTION MOTOR DRIVE PARAMETERS AND TEST-BENCH RATED VALUES 

Power ( W) 0.4 

Dc-link voltage (V) 300 

Switching frequency (kHz) 10 

𝐼𝑝𝑒𝑎𝑘  (A) 2.6 

𝑖𝑑  (A) 1.1 

𝑖𝑞  (A) 3 

𝑛𝑚 (  m) 1000 
𝑅𝑠  (Ω) 4.2 
𝑅𝑟  (Ω) 2 
𝐿𝑚 (mH) 420 
𝐿𝑙𝑠  (mH) 4.2 
𝐿𝑙𝑟  (mH) 55 
𝑅𝑙𝑜𝑎𝑑  (Ω) 25 
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Fig. 4: Scheme of the test bench used for the experimental results. 

 
Four hall-effect sensors (LEM LAH 25-NP) and a digital 

encoder (GHM510296R/2500) have been used to obtain the 

current and speed measurements, respectively. A dc machine 

is coupled to the shaft of the six-phase induction motor in 

order to perform load tests. The armature of the dc machine is 

connected to a variable passive R load that dissipates the 

power and the load torque is consequently speed-dependent.   

B. Experimental results: 

This section experimentally verifies that the injection of x-y 

currents during the braking transient can effectively maintain 

the electrical power supplied to the stator above a certain 
threshold. This prevents the power reversal that eventually 

provokes the rise of the dc-link voltage. As discussed in 

sections II and III, the problem commences when the power is 

reversed during the braking transient and consequently the 

threshold for the activation of the x-y current injection is set to 

zero (Fig. 2c and 3b). Nevertheless, for security reason in the 

laboratory this threshold is set to 70W, so the aim of the 

control strategy is to maintain the input power above 

𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .  

In order to prove the capability of the loss controller to limit 

the stator power above 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , the same test is done 
without (Fig. 5) and with (Fig. 6) the activation of the x-y 

current injection of Fig. 3b. In the test the six-phase machine 

is driven in steady-state at 250 rpm and the speed reference is 

then decreased in a ramp-wise manner at 𝑡 = 5𝑠 down to 150 

rpm. Both tests are done by setting a d-current of 1.1A, with a 

switching frequency of 10 kHz and a dc-link voltage of 300V.  

Fig. 5a shows a satisfactory speed tracking of the machine 

both in steady-state and during the deceleration transient. The 

d-current is constantly regulated to 1.1A and it is fully 

decoupled from the q-current, which is decreased during the 
transient to fulfill the dynamic requirements (Fig. 5b). The x-y 

currents are regulated to zero (Fig. 5c) because the controller 

of Fig. 3b is not activated and consequently 𝛾 = 0 throughout 

the test (Fig. 5e). However, the slope of the deceleration ramp 

that is initiated at 𝑡 = 5  is high enough to make the stator 

power (𝑃𝑠) drop below the threshold of 70W as it can be 

observed in the zoom-in detail of Fig. 5d. 

When the x-y current injection of Fig. 3b is activated it is 

still possible to satisfactorily regulate the speed and d-q 

currents (Fig. 6a and 6b). However, the activation of the x-y 

current injection during the braking transient (Fig. 6c) 

maintains the stator power above the threshold of 70W even 

during the deceleration process (Fig. 6d). The value of 𝛾 is 

zero while the stator power is above 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , but at 

approximately 𝑡 = 6  the stator power falls below this limit. 

Then, a non-zero current injection parameter 𝛾 is provided by 

the controller shown in Fig. 3b and this allows the x-y current 
injection during the last part of the braking process (from 

𝑡 = 6.05𝑠 to 𝑡 = 6.3𝑠 as it can be observed in the zoom-in 

detail of Fig. 6e). As expected, no further current injection is 

obtained after the deceleration process. While the braking 

power and the dynamics are the same in Figs. 5 and 6, the x-y 

current injection is the key to dissipate the extra power. The 

additional copper losses permit to keep the stator power above 

the threshold and avoid the eventual rise of the dc-link 

capacitor voltage. 
 

To summarize, the transient x-y current injection has the 

following properties: 

 It is fully decoupled from the d-q current tracking (Fig. 

6b) and consequently it does not disturb the flux/torque 

production. 

 It does not affect at all the speed dynamics during the 
braking transient (Fig. 6a). 

 It can be performed in a quick manner due to the low 

electrical time constant (Fig. 6c). 

 It maintains the stator power that is supplied to the 

motor above a certain threshold (Fig. 6d). 

 It requires low voltage requirements due to the low 

impedance of the x-y plane (Fig. 6f). 

 It keeps changes in the control strategy to a minimum, 

just adding the controller of Fig. 3b. 

These features are in accordance with the desired 

characteristics listed in section II and consequently prove that 

inducing machine losses with the suggested method can be an 

effective way to help the braking transient and to avoid 

eventual dc-link over-voltages. 

V. CONCLUSIONS 

Electrical drives with unidirectional power flow and 
without braking resistors can only improve their braking 

capability by transiently inducing extra losses in the system. 

This work presents an innovative use of the additional degrees 

of freedom that exist in six-phase drives and allow generation 

of extra copper losses during the braking process without 

disturbing the flux and torque production. A loss controller is 

included into the field oriented control providing a simple and 

effective manner to enhance the braking capability. Compared 

to previous methods used in three-phase drives, three main 

distinctive features can be highlighted in relation to the 

proposed technique: 
 It is possible to independently regulate the drive losses 

without disturbing the flux and torque production. 
Consequently, the dynamics of the drive are not 
affected and there is no risk of overmagnetizing the 
machine.
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 5. Experimental results without x-y current injection during braking: (a) motor speed (𝜔𝑟), (b) d-q currents, (c) x’-y’ currents, (d) stator power (𝑃𝑠), (e) 

amount of injection (𝛾) and (f) x’-y’ voltage references. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Fig. 6. Experimental results with x-y current injection during braking: (a) motor speed (𝜔𝑟), (b) d-q currents, (c) x’-y’ currents, (d) stator power (𝑃𝑠), (e) amount 

of injection (𝛾) and (f) x’-y’ voltage references. 
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 The low impedance in the x-y plane allows the 

injection of circulating currents in a quick manner 
with low voltage requirements. 

 Modifications in the control scheme are kept to a 
minimum. Since FOC strategies already include 
controllers that regulate x-y currents to zero in normal 
operation, it is only necessary to include a loss 
controller that activates the injection below a certain 
power threshold.  

Even though the manner to inject the x-y currents may 

differ, the method is generally valid for any multiphase 

machine with distributed windings. 
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