8 research outputs found

    Cannabinoid Receptor Activation In The Nucleus Tractus Solitaries Produces Baroreflex-Like Responses In The Rat

    Get PDF
    The effects of cannabinoids on the baroreflex have been investigated in the nucleus tractus solitarii (NTS). In urethane-anesthetized rats, microinjection of the cannabinoid (CB) receptor agonist WIN 55212-2 (100 mM) into the NTS produced a short lasting decrease in arterial pressure (from 95.2 ± 2.9 to 76.2 ± 1.5, n=5, P0.05) though it inhibited the agonist-induced responses. The non-NMDA receptor antagonist, DNQX (4 mM) microinjections antagonized the actions of CB agonist WIN 55212-2. Furthermore, sinoaortic denervation attenuated the responses to CB agonists suggesting an intact baroreflex arc is necessary to elicit CB-mediated effects. Neither WIN 55212-2 nor AM 281, altered baroreceptor reflex activation by bolus phenylephrine (25 microg//kg) injections. These data suggest that cannabinoid receptors in the NTS are not involved in the tonic regulation of the arterial pressure but may have a modulatory role in the baroreceptor reflex integration.PubMe

    Reelin signaling antagonizes β-amyloid at the synapse

    No full text
    Abnormal processing of the amyloid precursor protein (APP) and β-amyloid (Aβ) plaque accumulation are defining features of Alzheimer disease (AD), a genetically complex neurodegenerative disease that is characterized by progressive synapse loss and neuronal cell death. Aβ induces synaptic dysfunction in part by altering the endocytosis and trafficking of AMPA and NMDA receptors. Reelin is a neuromodulator that increases glutamatergic neurotransmission by signaling through the postsynaptic ApoE receptors Apoer2 and Vldlr and thereby potently enhances synaptic plasticity. Here we show that Reelin can prevent the suppression of long-term potentiation and NMDA receptors, which is induced by levels of Aβ comparable to those present in an AD-afflicted brain. This reversal is dependent upon the activation of Src family tyrosine kinases. At high concentrations of Aβ peptides, Reelin can no longer overcome the Aβ induced functional suppression and this coincides with a complete blockade of the Reelin-dependent phosphorylation of NR2 subunits. We propose a model in which Aβ, Reelin, and ApoE receptors modulate neurotransmission and thus synaptic stability as opposing regulators of synaptic gain control

    Regulation of the hippocampal translatome by Apoer2-ICD release

    No full text
    Abstract Background ApoE4, the most significant genetic risk factor for late-onset Alzheimer’s disease (AD), sequesters a pro-synaptogenic Reelin receptor, Apoer2, in the endosomal compartment and prevents its normal recycling. In the adult brain, Reelin potentiates excitatory synapses and thereby protects against amyloid-β toxicity. Recently, a gain-of-function mutation in Reelin that is protective against early-onset AD has been described. Alternative splicing of the Apoer2 intracellular domain (Apoer2-ICD) regulates Apoer2 signaling. Splicing of juxtamembraneous exon 16 alters the γ-secretase mediated release of the Apoer2-ICD as well as synapse number and LTP, and inclusion of exon 19 ameliorates behavioral deficits in an AD mouse model. The Apoer2-ICD has also been shown to alter transcription of synaptic genes. However, the role of Apoer2-ICD release upon transcriptional regulation and its role in AD pathogenesis is unknown. Methods To assess in vivo mRNA-primed ribosomes specifically in hippocampi transduced with Apoer2-ICD splice variants, we crossed wild-type, cKO, and Apoer2 cleavage-resistant mice to a Cre-inducible translating ribosome affinity purification (TRAP) model. This allowed us to perform RNA-Seq on ribosome-loaded mRNA harvested specifically from hippocampal cells transduced with Apoer2-ICDs. Results Across all conditions, we observed ~4,700 altered translating transcripts, several of which comprise key synaptic components such as extracellular matrix and focal adhesions with concomitant perturbation of critical signaling cascades, energy metabolism, translation, and apoptosis. We further demonstrated the ability of the Apoer2-ICD to rescue many of these altered transcripts, underscoring the importance of Apoer2 splicing in synaptic homeostasis. A variety of these altered genes have been implicated in AD, demonstrating how dysregulated Apoer2 splicing may contribute to neurodegeneration. Conclusions Our findings demonstrate how alternative splicing of the APOE and Reelin receptor Apoer2 and release of the Apoer2-ICD regulates numerous translating transcripts in mouse hippocampi in vivo. These transcripts comprise a wide range of functions, and alterations in these transcripts suggest a mechanistic basis for the synaptic deficits seen in Apoer2 mutant mice and AD patients. Our findings, together with the recently reported AD-protective effects of a Reelin gain-of-function mutation in the presence of an early-onset AD mutation in Presenilin-1, implicate the Reelin/Apoer2 pathway as a target for AD therapeutics. Graphical Abstrac

    Developmental maturation of synaptic and extrasynaptic GABA(A) receptors in mouse thalamic ventrobasal neurones

    No full text
    Thalamic ventrobasal (VB) relay neurones express multiple GABAA receptor subtypes mediating phasic and tonic inhibition. During postnatal development, marked changes in subunit expression occur, presumably reflecting changes in functional properties of neuronal networks. The aims of this study were to characterize the properties of synaptic and extrasynaptic GABAA receptors of developing VB neurones and investigate the role of the α1 subunit during maturation of GABA-ergic transmission, using electrophysiology and immunohistochemistry in wild type (WT) and α10/0 mice and mice engineered to express diazepam-insensitive receptors (α1H101R, α2H101R). In immature brain, rapid (P8/9–P10/11) developmental change to mIPSC kinetics and increased expression of extrasynaptic receptors (P8–27) formed by the α4 and δ subunit occurred independently of the α1 subunit. Subsequently (≥ P15), synaptic α2 subunit/gephyrin clusters of WT VB neurones were replaced by those containing the α1 subunit. Surprisingly, in α10/0 VB neurones the frequency of mIPSCs decreased between P12 and P27, because the α2 subunit also disappeared from these cells. The loss of synaptic GABAA receptors led to a delayed disruption of gephyrin clusters. Despite these alterations, GABA-ergic terminals were preserved, perhaps maintaining tonic inhibition. These results demonstrate that maturation of synaptic and extrasynaptic GABAA receptors in VB follows a developmental programme independent of the α1 subunit. Changes to synaptic GABAA receptor function and the increased expression of extrasynaptic GABAA receptors represent two distinct mechanisms for fine-tuning GABA-ergic control of thalamic relay neurone activity during development
    corecore