4 research outputs found

    Biodrying under Greenhouse Conditions as Pretreatment for Horticultural Waste

    Get PDF
    The biodrying process was studied as an alternative technology to reduce the mass and volume of horticultural waste. Four static piles were prepared inside a greenhouse: two containing whole waste and two consisting of shredded waste. All the piles were compared with a test pile containing whole waste and placed outside the greenhouse. In two cases, ventilation ducts were installed to improve aeration. Each greenhouse was 2.0 m wide, 3.5 m long and 1.16 m high. The air temperature and relative humidity were monitored both inside and outside the greenhouse. Mass, humidity, organic matter and total nitrogen in the waste were measured. Piles inside the greenhouse showed decreases of 80% and 75% in weight and volume, respectively, during the first 16 days. The data obtained in this work suggest that biodrying could improve the handling and transport of horticultural waste while also minimizing the impact of pollutants

    Effective In Vitro Control of Two Phytopathogens of Agricultural Interest Using Cell-Free Extracts of Pseudomonas fluorescens and Chitosan

    No full text
    A biofungicide is a natural product that can be derived from various sources such as, among others, microorganisms, higher plants, animal products, phytochemicals, semiochemicals, and antagonist microorganisms. One of the most important approaches for the production of biofungicides is the combination of biocontrol agents. This study showed the inhibition growth of Alternaria alternata and Fusarium solani treated with cell-free extracts of P. fluorescens. Using thin-layer chromatography and plate assays it was also demonstrated that the cell-free extracts of P. fluorescens contained siderophores and derivates of 4-diacetylphloroglucinol and phenazine. Moreover, the combination of cell-free extracts of P. fluorescens and chitosan [50–1.5% (v/v)] had a synergistic effect since they notably inhibited the mycelial growth of A. altenata and F. solani. Various morphological alterations to the mycelia and conidia of the treated fungi as a result of this combination were also observed. The present study could be a starting point to control other fungal phytopathogens using different cell-free extracts and chitosan as biocontrol agents

    MEGARA, the R=6000-20000 IFU and MOS of GTC

    Get PDF
    MEGARA is the new generation IFU and MOS optical spectrograph built for the 10.4m Gran Telescopio CANARIAS (GTC). The project was developed by a consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain) and UPM (Spain). The instrument arrived to GTC on March 28th 2017 and was successfully integrated and commissioned at the telescope from May to August 2017. During the on-sky commissioning we demonstrated that MEGARA is a powerful and robust instrument that provides on-sky intermediate-to-high spectral resolutions RFWHM ~ 6,000, 12,000 and 20,000 at an unprecedented efficiency for these resolving powers in both its IFU and MOS modes. The IFU covers 12.5 x 11.3 arcsec 2 while the MOS mode allows observing up to 92 objects in a region of 3.5 x 3.5 arcmin 2 . In this paper we describe the instrument main subsystems, including the Folded-Cassegrain unit, the fiber link, the spectrograph, the cryostat, the detector and the control subsystems, and its performance numbers obtained during commissioning where the fulfillment of the instrument requirements is demonstrated. © 2018 SPIE

    First scientific observations with MEGARA at GTC

    Get PDF
    On June 25th 2017, the new intermediate-resolution optical IFU and MOS of the 10.4-m GTC had its first light. As part of the tests carried out to verify the performance of the instrument in its two modes (IFU and MOS) and 18 spectral setups (identical number of VPHs with resolutions R=6000-20000 from 0.36 to 1 micron) a number of astronomical objects were observed. These observations show that MEGARA@GTC is called to fill a niche of high-throughput, intermediateresolution IFU and MOS observations of extremely-faint narrow-lined objects. Lyman-α absorbers, star-forming dwarfs or even weak absorptions in stellar spectra in our Galaxy or in the Local Group can now be explored to a new level. Thus, the versatility of MEGARA in terms of observing modes and spectral resolution and coverage will allow GTC to go beyond current observational limits in either depth or precision for all these objects. The results to be presented in this talk clearly demonstrate the potential of MEGARA in this regard
    corecore