101 research outputs found

    Femtosecond multichannel photodissociation dynamics of CH3I from the A band by velocity map imaging

    Get PDF
    4 pages, 3 figures, 1 table.The reaction times of several well-defined channels of the C–I bond rupture of methyl iodide from the A band, which involves nonadiabatic dynamics yielding ground state I(2P3/2) and spin-orbit excited I*(2P1/2) and ground and vibrationally excited CH3 fragments, have been measured by a combination of a femtosecond laser pump-probe scheme and velocity map imaging techniques using resonant detection of ground state CH3 fragments. The reaction times found for the different channels studied are directly related with the nonadiabatic nature of this multidimensional photodissociation reaction.Two of the authors (J. G. I. and J. D.) gratefully acknowledge financial support from the FPI program and the CSIC-Unidades Asociadas program, respectively, of the Spanish Ministry of Education and Science (MEC). This work has been financed by the Spanish MEC through Grant No. CTQ2005-08493- C02-01.Peer reviewe

    Proyectos y concreciones : obras y políticas públicas durante el primer peronismo en Mendoza (1946-1955)

    Get PDF
    La interacción entre Estado, técnicas y política, nos demuestra Proyectos y concreciones, puede resultar un camino particularmente fecundo para abordar de manera ordenada, sistemática e interpretativa este campo. Se puede decir que proporciona un marco de temas relacionados que en este caso se aplica al estudio de la obra pública del peronismo en una provincia, pero que, en tanto problemática, puede ser utilizado para el abordaje de otros períodos y jurisdicciones. Como se explica en la introducción que incluye sus principales referencias, el trabajo de investigación realizado y presentado en este libro ha recogido sugerencias de varios sectores de la producción historiográfica nacional de las últimas décadas para construir una mirada específica sobre las obras públicas, mirada que no puede sino pensarse como un espacio de cruce. Nos referimos a los estudios del Estado, las historias provinciales y locales, los estudios sobre el primer peronismo y el análisis de las transformaciones espaciales, comprendiendo tanto sus distintas escalas como las disciplinas y técnicas que las proyectan y ejecutan. Considerando este marco, de ingresa a los contenidos del libro por el camino de los estudios sobre el primer peronismo. Como es sabido, desde hace ya varias décadas, los estudios provinciales han modificado las aproximaciones historiográficas tradicionales sobre tal movimiento político. El conocido trabajo editado por Darío Macor y César Tcach (La invención del peronismo en el interior del país, 2003) produjo en su momento una importante inflexión, cuya productividad continúa operando en el presente. Sin duda este libro es heredero de esa búsqueda de una nueva mirada sobre el peronismo producida por la elección jurisdiccional configurando nuevos objetos de estudio capaces de registrar realidades políticas y sociales diferentes de las presentadas por los estudios centrados en Buenos Aires o en la política a nivel nacional

    Computational Study of the Effect of Electrode Polarity on Neural Activation Related to Paresthesia Coverage in Spinal Cord Stimulation Therapy

    Full text link
    [EN] Objective: Using computer simulation, we investigated the effect of electrode polarity on neural activation in spinal cord stimulation and propose a new strategy to maximize the activating area in the dorsal column (DC) and, thus, paresthesia coverage in clinical practice. Materials and Methods: A new three-dimensional spinal cord model at the T10 vertebral level was developed to simulate neural activation induced by the electric field distribution produced by different typical four-contact electrode polarities in single- and dual-lead stimulation. Our approach consisted of the combination of a finite element model of the spinal cord developed in COMSOL Multiphysics and a nerve fiber model implemented in MATLAB. Five evaluation parameters were evaluated, namely, the recruitment ratio, the perception and discomfort thresholds, and the activating area and depth. The results were compared quantitatively. Results: The dual-guarded cathode presents the maximum activating area and depth in single- and dual-lead stimulation. However, the lowest value of the ratio between the perception threshold in DC and the perception threshold in the dorsal root (DR) is achieved when the guarded cathode is programmed. Although the two versions of bipolar polarity (namely bipolar 1 and bipolar 2) produce higher activating area and depth than the guarded cathode, they are suitable for producing DR stimulation. Similarly, dual-lead stimulation is likely to activate DR fibers because the electrodes are closer to these fibers. Conclusions: The results suggest that the activating area in the DC is maximized by using the dual-guarded cathode both in single- and dual-lead stimulation modes. However, DC nerve fibers are preferentially stimulated when the guarded cathode is used. According to these results, the new electrode programming strategy that we propose for clinical practice first uses the dual-guarded cathode, but, if the DR nerve fibers are activated, it then uses guarded cathode polarity.The authors thank Virginie Callot for providing us with all the spinal cord measurements from her research group’s study. The authors would like also to thank Surgicen S.L. for providing financial assistanceDurá, JL.; Solanes, C.; De Andrés, J.; Saiz Rodríguez, FJ. (2019). Computational Study of the Effect of Electrode Polarity on Neural Activation Related to Paresthesia Coverage in Spinal Cord Stimulation Therapy. Neuromodulation: Technology at the Neural Interface. 22(3):269-279. https://doi.org/10.1111/ner.1290926927922

    What is the role of frequency on neural activation in tonic stimulation in SCS therapy? A computational study on sensoty Ab nerve fibers

    Full text link
    [EN] The investigation of the effect of the stimulation parameters by computational modeling helps to understand the electrical response of specific neural elements in Spinal Cord Stimulation (SCS) therapy for chronic pain treatment. While the effect of the amplitude, the pulse width, and the electrode configuration on neural activation has been widely studied and is well-established in tonic stimulation, how frequency influences neural activation remains unclear. Thus, the aim of this work is to study the effect of frequency on the electrical response of sensory A beta neurons in tonic stimulation. Our approach consisted of the development of a new nerve fiber model from the combination of two previous models used in SCS modeling (the Wesselink-Holsheimer-Boom model and the Richardson-McIntyre-Grill model B). We simulate the action potential and the gates probabilities evolution of a 12.8 mu m fiber diameter at different pulse frequencies (50, 350, 600, 800, and 1000 Hz). We also simulated the firing rate of two nerve fiber diameters (5.7 and 12.8 mu m) in function of pulse frequency (from 1 to 1400 Hz) at different pulse widths (100, 300, and 500 mu s). In the range of 2-1000 Hz, the firing rate of a 12.8 mu m-diameter nerve fiber can be maximized by utilizing a 350 Hz, 300 mu s-stimulus. Frequencies above 350 Hz reduce half to one-third the firing rate, and 1000 Hz-stimulus overrides the electrical activity of the sensory nerve fiber. Small fibers (5.7 mu m-diameter) present lower firing rate values than large fibers (12.8 mu m-diameter). High values of pulse width decrease the firing rate of the nerve fibers as well as the range of frequencies that could be used to stimulate. According to the results, the frequency could have a considerable implication on the modulation of the firing rate of a nerve fiber. Thus, the frequency could play an important role to select and increase the activity of specific neural elements of the spinal cord in SCS therapy.Solanes, C.; Durá, JL.; De Andrés, J.; Saiz Rodríguez, FJ. (2021). What is the role of frequency on neural activation in tonic stimulation in SCS therapy? A computational study on sensoty Ab nerve fibers. IEEE Access. 9:107446-107461. https://doi.org/10.1109/ACCESS.2021.3099986S107446107461

    A detailed experimental and theoretical study of the femtosecond A -band photodissociation of C H3I

    Get PDF
    The real time photodissociation dynamics of C H3I from the A band has been studied experimentally and theoretically. Femtosecond pump-probe experiments in combination with velocity map imaging have been carried out to measure the reaction times (clocking) of the different (nonadiabatic) channels of this photodissociation reaction yielding ground and spin-orbit excited states of the I fragment and vibrationless and vibrationally excited (symmetric stretch and umbrella modes) C H3 fragments. The measured reaction times have been rationalized by means of a wave packet calculation on the available ab initio potential energy surfaces for the system using a reduced dimensionality model. A 40 fs delay time has been found experimentally between the channels yielding vibrationless CH3(ν=0) and I(2P3/2) and I*(2P1/2) that is well reproduced by the calculations. However, the observed reduction in delay time between the I and I* channels when the C H3 fragment appears with one or two quanta of vibrational excitation in the umbrella mode is not well accounted for by the theoretical model. © 2008 American Institute of Physics.This work has been financed by the Spanish MEC through Grant Nos. CTQ2005-08493-C02-01, FIS-2007- 62002, and Consolider program “Science and Applications of Ultrafast Ultraintense Lasers” No. CSD2007-00013.Peer Reviewe

    Acoustic behavior of the VEGA launch pad environment

    Full text link
    [EN] The acoustic pressure levels experienced by the spacecraft and launchers during the lift-off is due among other factor by the reflection of the sound waves on the launch pad. The acoustic load distribution in the area of the launcher depends on the geometric, mechanical and acoustic characteristics of the ground facilities. This work is intended to study the acoustic environment of the launch pad. A numerical and experimental investigation is developed in order to study in the linear regime the acoustic behaviour of a subscale model of the VEGA's launch pad. The acoustic measurements are performed in an anechoic chamber using an electroacoustic source that emits incoherent noise, mimicking the real acoustic source. The acoustic pressure field is measured at different positions in front of the launch pad mock-up, in the area where the acoustic waves are reflected. Among the future perspectives of this work is to study and develop new methods for the mitigation of the sound pressure levels.Authors acknowledge the support of the European Space Agency under contract ¿Sonic Crystals For Noise Reduction At The Launch Pad¿ ESA ITT 1-7094 (ITI) and the 441-2015 Co-Sponsered PhD ¿Acoustic Reduction Methods for the Launch Pad¿. The work was supported by Spanish Ministry of Economy and Innovation (MINECO) and European Union FEDER through project FIS2015-65998-C2-2. Authors aknowledge Dhéric Mutel, Cyril Bernard and Clément Jost for their contribution to this workPicó Vila, R.; Herrero-Durá, I.; Sánchez Morcillo, VJ.; Salmerón-Contreras, LJ.; García-Raffi, LM. (2016). Acoustic behavior of the VEGA launch pad environment. Universidade do Porto. 1-6. http://hdl.handle.net/10251/181097S1

    Vibroacoustic effects of resonant sonic crystals in sound absorption

    Full text link
    [EN] A resonant sonic crystal made of solid elastic clamped beams is experimentally analysed in this work. The sonic crystal studied in this work has three characteristics: (i) a low filling fraction, (ii) a high frequency Band Gap and (iii) resonant scatterers. Due to the properties (i) and (ii), the sonic crystal behaves as an equivalent fluid with acoustic properties very closed to ones of the air. This means that the crystal is almost impedance matched, being the crystal transparent to the incident waves. However, the resonant elements have a resonance frequency in the range analysed in this work, introducing an absorption peak due to the resonances produced by the vibroacoustic coupling. The two microphone transfer function method is used to measure the (complex) impedance and then to evaluate experimentally the absorption coefficient of the 2D SC made of a set of parallel solid beams in the low frequency regime.Authors ackowledge the support of the European Space Agency under the 441-2015 Co-Sponsored PhD "Acoustic Noise Reduction Methods for the Launch Pad"Herrero-Durá, I.; Picó Vila, R.; Sánchez Morcillo, VJ.; García-Raffi, LM.; Romero García, V. (2016). Vibroacoustic effects of resonant sonic crystals in sound absorption. Universidade do Porto. 1-7. http://hdl.handle.net/10251/181082S1

    Sound absorption and diffusion by 2D arrays of Helmholtz resonators

    Full text link
    [EN] We report a theoretical and experimental study of an array of Helmholtz resonators optimized to achieve both efficient sound absorption and diffusion. The analysis starts with a simplified 1D model where the plane wave approximation is used to design an array of resonators showing perfect absorption for a targeted range of frequencies. The absorption is optimized by tuning the geometry of the resonators, i.e., by tuning the viscothermal losses of each element. Experiments with the 1D array were performed in an impedance tube. The designed system is extended to 2D by periodically replicating the 1D array. The 2D system has been numerically modeled and experimentally tested in an anechoic chamber. It preserves the absorption properties of the 1D system and introduces efficient diffusion at higher frequencies due to the joint effect of resonances and multiple scattering inside the discrete 2D structure. The combined effect of sound absorption at low frequencies and sound diffusion at higher frequencies, may play a relevant role in the design of noise reduction systems for different applications.This research was funded by the European Space Agency under the Networking/Partnering Initiative (NPI) contract number 441-2015. In memoriam to Julián Santiago-Prowald, Senior Advisor for the Structures, Mechanisms and Materials Division of ESA, a great man that always gave us his tireless support. AC acknowledges financial support from Generalitat Valenciana through the grant APOSTD/2018/229. VRG acknowledges the financial support from RFI Le Mans Acoustique (Région Pays de la Loire) in the framework of the project HYPERMETA funded under the program Étoiles Montantes of the Région Pays de la Loire. Authors acknowledge the support of the European Space Agency under contract 441-2015 Co- Sponsored PhD ¿Acoustic Reduction Methods for the Launch Pad¿ and project TRP ESA AO/1-9479/18/NL/LvH ¿Launch Sound Level Reduction¿. This article is based upon work from COST Action DENORMS CA15125, supported by COST (European Cooperation in Science and Technology).Herrero-Durá, I.; Cebrecos, A.; Picó Vila, R.; Romero-García, V.; García-Raffi, LM.; Sánchez Morcillo, VJ. (2020). Sound absorption and diffusion by 2D arrays of Helmholtz resonators. Applied Sciences. 10(5):1-15. https://doi.org/10.3390/app10051690S115105Sigalas, M. M., & Economou, E. N. (1992). Elastic and acoustic wave band structure. Journal of Sound and Vibration, 158(2), 377-382. doi:10.1016/0022-460x(92)90059-7Matlack, K. H., Bauhofer, A., Krödel, S., Palermo, A., & Daraio, C. (2016). Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proceedings of the National Academy of Sciences, 113(30), 8386-8390. doi:10.1073/pnas.1600171113Wormser, M., Wein, F., Stingl, M., & Körner, C. (2017). Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization. Materials, 10(10), 1125. doi:10.3390/ma10101125Lucklum, F., & Vellekoop, M. J. (2018). Bandgap engineering of three-dimensional phononic crystals in a simple cubic lattice. Applied Physics Letters, 113(20), 201902. doi:10.1063/1.5049663D’Alessandro, L., Ardito, R., Braghin, F., & Corigliano, A. (2019). Low frequency 3D ultra-wide vibration attenuation via elastic metamaterial. Scientific Reports, 9(1). doi:10.1038/s41598-019-44507-6Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0Cebrecos, A., Krattiger, D., Sánchez-Morcillo, V. J., Romero-García, V., & Hussein, M. I. (2019). The finite-element time-domain method for elastic band-structure calculations. Computer Physics Communications, 238, 77-87. doi:10.1016/j.cpc.2018.12.016Cebrecos, A., Romero-García, V., & Groby, J. (2019). Complex Dispersion Relation Recovery from 2D Periodic Resonant Systems of Finite Size. Applied Sciences, 9(3), 478. doi:10.3390/app9030478Hussein, M. I., Leamy, M. J., & Ruzzene, M. (2014). Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook. Applied Mechanics Reviews, 66(4). doi:10.1115/1.4026911Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112Martínez-Sala, R., Rubio, C., García-Raffi, L. M., Sánchez-Pérez, J. V., Sánchez-Pérez, E. A., & Llinares, J. (2006). Control of noise by trees arranged like sonic crystals. Journal of Sound and Vibration, 291(1-2), 100-106. doi:10.1016/j.jsv.2005.05.030Garcia-Raffi, L. M., Salmerón-Contreras, L. J., Herrero-Durá, I., Picó, R., Redondo, J., Sánchez-Morcillo, V. J., … Romero-García, V. (2018). Broadband reduction of the specular reflections by using sonic crystals: A proof of concept for noise mitigation in aerospace applications. Aerospace Science and Technology, 73, 300-308. doi:10.1016/j.ast.2017.11.048Sanchez-Perez, J. V., Castineira-Ibanez, S., Romero-Garcia, V., & Garcia-Raffi, L. M. (2015). PERIODIC SYSTEMS AS ROAD TRAFFIC NOISE REDUCING DEVICES: PROTOTYPE AND STANDARDIZATION. Environmental Engineering and Management Journal, 14(12), 2759-2769. doi:10.30638/eemj.2015.293Kandula, M. (2009). Broadband shock noise reduction in turbulent jets by water injection. Applied Acoustics, 70(7), 1009-1014. doi:10.1016/j.apacoust.2008.12.001Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P. (2000). Locally Resonant Sonic Materials. Science, 289(5485), 1734-1736. doi:10.1126/science.289.5485.1734Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X. (2006). Ultrasonic metamaterials with negative modulus. Nature Materials, 5(6), 452-456. doi:10.1038/nmat1644Sugimoto, N., & Horioka, T. (1995). Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators. The Journal of the Acoustical Society of America, 97(3), 1446-1459. doi:10.1121/1.412085Theocharis, G., Richoux, O., García, V. R., Merkel, A., & Tournat, V. (2014). Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New Journal of Physics, 16(9), 093017. doi:10.1088/1367-2630/16/9/093017Jiménez, N., Cox, T. J., Romero-García, V., & Groby, J.-P. (2017). Metadiffusers: Deep-subwavelength sound diffusers. Scientific Reports, 7(1). doi:10.1038/s41598-017-05710-5Ballestero, E., Jiménez, N., Groby, J.-P., Dance, S., Aygun, H., & Romero-García, V. (2019). Experimental validation of deep-subwavelength diffusion by acoustic metadiffusers. Applied Physics Letters, 115(8), 081901. doi:10.1063/1.5114877Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2011). Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. Journal of Applied Physics, 110(1), 014904. doi:10.1063/1.3599886Lagarrigue, C., Groby, J. P., & Tournat, V. (2013). Sustainable sonic crystal made of resonating bamboo rods. The Journal of the Acoustical Society of America, 133(1), 247-254. doi:10.1121/1.4769783Krynkin, A., Umnova, O., Yung Boon Chong, A., Taherzadeh, S., & Attenborough, K. (2010). Predictions and measurements of sound transmission through a periodic array of elastic shells in air. The Journal of the Acoustical Society of America, 128(6), 3496-3506. doi:10.1121/1.3506342Koussa, F., Defrance, J., Jean, P., & Blanc-Benon, P. (2013). Acoustical Efficiency of a Sonic Crystal Assisted Noise Barrier. Acta Acustica united with Acustica, 99(3), 399-409. doi:10.3813/aaa.918621Castiñeira-Ibáñez, S., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Overlapping of acoustic bandgaps using fractal geometries. EPL (Europhysics Letters), 92(2), 24007. doi:10.1209/0295-5075/92/24007García-Chocano, V. M., Cabrera, S., & Sánchez-Dehesa, J. (2012). Broadband sound absorption by lattices of microperforated cylindrical shells. Applied Physics Letters, 101(18), 184101. doi:10.1063/1.4764560Lardeau, A., Groby, J.-P., & Romero-García, V. (2016). Broadband Transmission Loss Using the Overlap of Resonances in 3D Sonic Crystals. Crystals, 6(5), 51. doi:10.3390/cryst6050051Cavalieri, T., Cebrecos, A., Groby, J.-P., Chaufour, C., & Romero-García, V. (2019). Three-dimensional multiresonant lossy sonic crystal for broadband acoustic attenuation: Application to train noise reduction. Applied Acoustics, 146, 1-8. doi:10.1016/j.apacoust.2018.10.020Dimitrijević, S. M., García-Chocano, V. M., Cervera, F., Roth, E., & Sánchez-Dehesa, J. (2019). Sound Insulation and Reflection Properties of Sonic Crystal Barrier Based on Micro-Perforated Cylinders. Materials, 12(17), 2806. doi:10.3390/ma12172806Stinson, M. R. (1991). The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape. The Journal of the Acoustical Society of America, 89(2), 550-558. doi:10.1121/1.400379Duclos, A., Lafarge, D., & Pagneux, V. (2009). Transmission of acoustic waves through 2D phononic crystal: visco-thermal and multiple scattering effects. The European Physical Journal Applied Physics, 45(1), 11302. doi:10.1051/epjap:2008203Romero-García, V., Theocharis, G., Richoux, O., & Pagneux, V. (2016). Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America, 139(6), 3395-3403. doi:10.1121/1.4950708Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V., & Pagneux, V. (2016). Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Scientific Reports, 6(1). doi:10.1038/srep19519Jiménez, N., Huang, W., Romero-García, V., Pagneux, V., & Groby, J.-P. (2016). Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters, 109(12), 121902. doi:10.1063/1.4962328Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B, 95(1). doi:10.1103/physrevb.95.014205Jiménez, N., Romero-García, V., Pagneux, V., & Groby, J.-P. (2017). Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Scientific Reports, 7(1). doi:10.1038/s41598-017-13706-4Merkel, A., Theocharis, G., Richoux, O., Romero-García, V., & Pagneux, V. (2015). Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Applied Physics Letters, 107(24), 244102. doi:10.1063/1.4938121Kergomard, J., & Garcia, A. (1987). Simple discontinuities in acoustic waveguides at low frequencies: Critical analysis and formulae. Journal of Sound and Vibration, 114(3), 465-479. doi:10.1016/s0022-460x(87)80017-2Sánchez-Dehesa, J., Garcia-Chocano, V. M., Torrent, D., Cervera, F., Cabrera, S., & Simon, F. (2011). Noise control by sonic crystal barriers made of recycled materials. The Journal of the Acoustical Society of America, 129(3), 1173-1183. doi:10.1121/1.3531815Christensen, J., Romero-García, V., Picó, R., Cebrecos, A., de Abajo, F. J. G., Mortensen, N. A., … Sánchez-Morcillo, V. J. (2014). Extraordinary absorption of sound in porous lamella-crystals. Scientific Reports, 4(1). doi:10.1038/srep0467

    Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm

    Full text link
    [EN] This paper shows a promising method for acoustic barrier design using a new acoustic material called Sonic Crystals (SCs). The configuration of these SCs is set as a multiobjective optimization problem which is very difficult to solve with conventional optimization techniques. The paper presents a new parallel implementation of a Multiobjective Evolutionary Algorithm called ev-MOGA (also known as (sic)-MOGA) and its application in a complex design problem. ev-MOGA algorithm has been designed to converge towards a reduced, but well distributed, representation of the Pareto Front (solution of the multiobjective optimization problem). The algorithm is presented in detail and its most important properties are discussed. To reduce the ev-MOGA computational cost when.Partially supported by MEC (Spanish Government) and FEDER funds: projects DPI2005-07835, MAT2006-03097 and Generalitat Valenciana (Spain) projects GV06/026, GV/2007/191Herrero Durá, JM.; Garcia-Nieto, S.; Blasco, X.; Romero García, V.; Sánchez Pérez, JV.; García-Raffi, LM. (2009). Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization. 39(2):203-215. https://doi.org/10.1007/s00158-008-0323-7S203215392Alander J (2002) An indexed bibliography of genetic algorithms & pareto and constrainedoptimization. Tech Rep, Dpt of Information Technology, University of VaasaCantú-Paz E (1997) A survey of parallel genetic algorithms. Tech Rep 97003, Illimois Genetic Algorithms LaboratotyCervera F, Sanchis L, Sánchez-Pérez JV, Martínez-Sala R, Rubio C, Meseguer F, López C, Caballero D, Sánchez-Dehesa J (2002) Refractive acoustic devices for airborne sound. Phys Rev Lett 88:0239021–0239024Chen Y, Ye Z (2001) Theoretical analysis of stop bands in two-dimensional periodic scattering arrays. Phys Rev E 64:036616Coello C, Toscano G, Mezura E (2005) Information processing with evolutionary algorithms. In: Grana M, Duro R, d’Anjou A, Wang PP (eds) Information processing with evolutionary algorithms: from industrial applicationsto academic speculations. Springer, New York, pp 213–231Coello C, Veldhuizen D, Lamont G (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer, DordrechtDeb K (2007) Current trends in evolutionary multi-objective optimization. Int J Simul Multidiscipl Des Optim 1:1–8Eshelman LJ (1991) The chc adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. In: Proceedings of the first workshop on foundations of genetic algorithms. Morgan Kaufmann, San Francisco, pp 265–283Fonseca C, (1995) Multiobjective genetic algorithms with application to control engineeringproblems. PhD thesis, Dpt of Automatic Control and Systems Engineering, University of SheffieldFuster E, Romero-García V, García-Raffi LM, Sánchez-Pérez EA, Sopena M, Sánchez-Pérez JV (2006) A phenomenological model for sonic crystals based on artificial neural networks. J Acoust Soc Am 120(2):1–6García-Pablos D, Sigalas M, de Espinosa FM, Torres M, Kafesaki M, García, N (2000) Theory and experiments on elastic band gaps. Phys Rev Lett 84:4349–4352Gazonas GA, Weile DS, Wildman R, Mohan A (2006) Genetic algorithm optimization of phononic bandgap structures. Int J Solids Struct 43:5851–5866Hakkansson A, Cervera F, Sánchez-Dehesa J (2005) Sound focusing by flat acoustic lenses without negative refraction. Appl Phys Lett 86:0541021–0541023Herrero J, Blasco X, Martínez M, Ramos C, Sanchis J (2007) Non-linear robust identification of a greenhouse model using multi-objective evolutionary algorithms. Biosyst Eng 98(3):335–346Herrero JM (2006) Non-linear robust identification using evolutionary algorithms. PhD thesis, Universidad Politécnica de Valencia, ValenciaHussein MI, Hamza K, Hulbert GM, Saitou K (2007) Optimal synthesis of 2d phononic crystals for broadband frequency isolation. Waves Random Complex Media 17(4):491–510Hussein MI, Hamza K, Hulbert GM, Scott RA, Saitou K (2006) Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Struct Multidisc Optim 31:60–75Kafesaki M, Economou E (1999) Multiple scattering theory for three-dimensional periodic acoustic composites. Phys Rev B 60:11993Kohn W, Rostoker N (1954) Solution of the schrodinger equation in periodic lattices with an aplication to metallic lithium. Phys Rev 94:1111Korringa J (1947) On th calculation of the energy of a bloch wave in a metal. Physica XIII:392Kushwaha M (1997) Stop-bands for periodic metallic rods: Sculptures that can filter the noise. Appl Phys Lett 70:3218–3220Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multi-objective optimization. Evol Comput 10(3):263–282Martínez-Sala R, Sancho J, Sánchez J, Gómez V, Llinares J, Meseguer F (1995) Sound attenuation by sculpture. Nature 378:241Miettinen KM (1998) Nonlinear multiobjective optimization. Kluwer, DordrechtMishra S, Deb K, Mohan M (2005) Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evol Comput 13(4):501–526Romero-García V, Fuster E, García-Raffi LM, Sánchez-Pérez EA, Sopena M, Llinares J, Sánchez-Pérez JV (2006) Band gap creation using quasiordered structures based on sonic crystals. Appl Phys Lett 88:1741041–17410413Sánchez-Pérez JV, Caballero D, Martínez-Sala R, Rubio C, Sánchez-Dehesa J, Meseguer F, Llinares J, Gálvez F (1998) Sound attenuation by a two-dimensional array of rigid cylinders. Phys Rev Lett 80:5325–5328Sánchez-Pérez JV, Rubio C, Martínez-Sala R, Sánchez-Grandia R, Gómez V (2002) Acoustic barriers based on periodic arrays of scatterers. Appl Phys Lett 27:5240–5242Sanchis L, Hakkansson A, López-Zanón D, Bravo-Abad J, Sánchez-Dehesa J (2004) Integrated optical devices design by genetic algorithm. Appl Phys Lett 84:4460–4462Shen M, Cao W (2001) Acoustic band-gap engineering using finite-size layered structures of multiple periodicity. Appl Phys Lett 75:3713–3715Sigalas M, Economou E (1992) Elastic and acoustic wave band structure. J Sound Vib 158:377Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: Methods and applications. Ph.D. thesis, Swiss Federal Institute of Technology Zuric

    Brain activity changes with emotional words in different stages of psychosis

    Full text link
    BackgroundTo date, a large number of functional magnetic resonance imaging (fMRI) studies have been conducted on psychosis. However, little is known about changes in brain functioning in psychotic patients using an emotional auditory paradigm at different stages of the disease. Such knowledge is important for advancing our understanding of the disorder and thus creating more targeted interventions. This study aimed to investigate whether individuals with first-episode psychosis (FEP) and chronic schizophrenia show abnormal brain responses to emotional auditory processing and to compare the responses between FEP and chronic schizophrenia. MethodsPatients with FEP (n = 31) or chronic schizophrenia (n = 23) and healthy controls (HCs, n = 31) underwent an fMRI scan while presented with both emotional and nonemotional words. ResultsUsing HC as a reference, patients with FEP showed decreased right temporal activation, while patients with chronic schizophrenia showed increased bilateral temporal activation. When comparing the patient groups, individuals with FEP showed lower frontal lobe activation. ConclusionTo the best of our knowledge, this is the first study with an emotional auditory paradigm used in psychotic patients at different stages of the disease. Our results suggested that the temporal lobe might be a key issue in the physiopathology of psychosis, although abnormal activation could also be derived from a connectivity problem. There is lower activation in the early stage and evolution to greater activation when patients become chronic. This study highlights the relevance of using emotional paradigms to better understand brain activation at different stages of psychosis
    corecore