7 research outputs found

    Investigating the turbulent hot gas in X-COP galaxy clusters

    Full text link
    Turbulent processes at work in the intracluster medium perturb this environment, displacing gas, and creating local density fluctuations that can be quantified via X-ray surface brightness fluctuation analyses. Improved knowledge of these phenomena would allow for a better determination of the mass of galaxy clusters, as well as a better understanding of their dynamic assembly. In this work, we aim to set constraints on the structure of turbulence using X-ray surface brightness fluctuations. We seek to consider the stochastic nature of this observable and to constrain the structure of the underlying power spectrum. We propose a new Bayesian approach, relying on simulation-based inference to account for the whole error budget. We used the X-COP cluster sample to individually constrain the power spectrum in four regions and within R500R_{500}. We spread the analysis on the 12 systems to alleviate the sample variance. We then interpreted the density fluctuations as the result of either gas clumping or turbulence. For each cluster considered individually, the normalisation of density fluctuations correlates positively with the Zernike moment and centroid shift, but negatively with the concentration and the Gini coefficient. The spectral index within R500R_{500} and evaluated over all clusters is consistent with a Kolmogorov cascade. The normalisation of density fluctuations, when interpreted in terms of clumping, is consistent within 0.5R5000.5 R_{500} with the literature results and numerical simulations; however, it is higher between 0.5 and 1R5001 R_{500}. Conversely, when interpreted on the basis of turbulence, we deduce a non-thermal pressure profile that is lower than the predictions of the simulations within 0.5 R500R_{500}, but still in agreement in the outer regions. We explain these results by the presence of central structural residues that are remnants of the dynamic assembly of the clusters.Comment: Accepted for publication in A&A. Abstract slightly abridged for arXi

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    Constraints on the antistar fraction in the Solar system neighborhood from the 10-years Fermi Large Area Telescope gamma-ray source catalog

    No full text
    International audienceIt is generally taken for granted that our Universe is free of antimatter objects and domains. This certitude has recently been challenged by the possible detection of anti-helium nuclei by AMS-02. Should the observation be confirmed, the existence of nearby antistars would make a plausible hypothesis to explain the origin of the antinuclei. In this paper we use the 10-years Fermi Large Area Telescope (LAT) gamma-ray source catalog to set constraints on the abundance of antistars around the Sun. We identify in the catalog 14 antistar candidates not associated with any objects belonging to established gamma-ray source classes and with a spectrum compatible with baryon-antibaryon annihilation. We use them along with an estimate of the LAT sensitivity to antistars to set upper limits on the local antistar fraction fˉf_{\bar{\ast}} with respect to normal stars. We provide parametric limits as a function of the closest antistar mass, velocity, and surrounding matter density. We also employ a novel Monte~Carlo method to set limits for a few hypotheses about the antistar population. For a population with properties equivalent to those of regular stars concentrated in the Galactic disk we obtain fˉ<2.5×106f_{\bar{\ast}} < 2.5 \times 10^{-6} at 95\% confidence level, which is 20 times more constraining than limits previously available. For a primordial population of antistars distributed in the Galactic halo we obtain new local upper limits which decrease as a function of antistar mass MM from fˉ<0.2f_{\bar{\ast}} < 0.2 at 95\% confidence level for M=1  MM = 1 \; M_\odot to fˉ<1.6×104f_{\bar{\ast}} < 1.6 \times 10^{-4} at 95\% confidence level for M=10  MM = 10 \; M_\odot. By combining these limits with existing microlensing constraints for lighter objects in the Magellanic clouds, we infer that a primordial population of halo antistars must have a density lower than O(105  pc3)\mathcal{O}(10^{-5}\;\text{pc}^{-3}) to O(102  pc3)\mathcal{O}(10^{-2}\;\text{pc}^{-3}) depending on their masses. Our limits can constrain models for the origin and propagation of antinuclei in cosmic rays

    Characterizing the bulk and turbulent gas motions in galaxy clusters

    No full text
    International audienceThe most massive halos of matter in the Universe grow via accretion and merger events throughout cosmic times. These violent processes generate shocks at many scales and induce large-scale bulk and turbulent motions. These processes inject kinetic energy at large scales, which is transported to the viscous dissipation scales, contributing to the overall heating and virialisation of the halo, and acting as a source of non-thermal pressure in the intra-cluster medium. Characterizing the physical properties of these gas motions will help us to better understand the assembly of massive halos, hence the formation and the evolution of these large-scale structures. We base this characterization on the study of the X-ray and Sunyaev-Zel’dovich effect brightness fluctuations. Our work relies on three complementary samples covering a wide range of red-shifts, masses and dynamical states of clusters. We present the results of our X-ray analysis for the low redshift sample, X-COP, and a subsample of higher redshift clusters. We investigate the derived properties according to the dynamical state of our clusters, and the possibility of a self-similar behaviour based on the reconstructed gas motions power-spectra and the correlation with various morphological indicators

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    No full text
    48 pages, 29 figures, submitted for publication in Experimental AstronomyThe Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. It is expected that thanks to the studies conducted so far on X-IFU, along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained (abridged)

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    48 pages, 29 figures, submitted for publication in Experimental AstronomyThe Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. It is expected that thanks to the studies conducted so far on X-IFU, along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained (abridged)
    corecore