204 research outputs found

    Opportunistic secure transmission for wireless relay networks with modify-and-forward protocol

    Get PDF
    This paper investigates the security at the physical layer in cooperative wireless networks (CWNs) where the data transmission between nodes can be realised via either direct transmission (DT) or relaying transmission (RT) schemes. Inspired by the concept of physical-layer network coding (PNC), a secure PNC-based modify-and-forward (SPMF) is developed to cope with the imperfect shared knowledge of the message modification between relay and destination in the conventional modify-and-forward (MF). In this paper, we first derive the secrecy outage probability (SOP) of the SPMF scheme, which is shown to be a general expression for deriving the SOP of any MF schemes. By comparing the SOPs of various schemes, the usage of the relay is shown to be not always necessary and even causes a poorer performance depending on target secrecy rate and quality of channel links. To this extent, we then propose an opportunistic secure transmission protocol to minimise the SOP of the CWNs. In particular, an optimisation problem is developed in which secrecy rate thresholds (SRTs) are determined to find an optimal scheme among various DT and RT schemes for achieving the lowest SOP. Furthermore, the conditions for the existence of SRTs are derived with respect to various channel conditions to determine if the relay could be relied on in practice

    On the handover security key update and residence management in LTE networks

    Get PDF
    In LTE networks, key update and residence management have been investigated as an effective solution to cope with desynchronization attacks in mobility management entity (MME) handovers. In this paper, we first analyse the impacts of the key update interval (KUI) and MME residence interval (MRI) on the handover performance in terms of the number of exposed packets (NEP) and signaling overhead rate (SOR). By deriving the bounds of the NEP and SOR over the KUI and MRI, it is shown that there exists a tradeoff between the NEP and the SOR, while our aim is to minimise both of them simultaneously. This accordingly motivates us to propose a multiobjective optimisation problem to find the optimal KUI and MRI that minimise both the NEP and SOR. By introducing a relative importance factor between the SOR and NEP along with their derived bounds, we further transform the proposed optimisation problem into a single-objective optimisation problem which can be solved via a simple numerical method. In particular, the results show that a higher accuracy of up to 1 second is achieved with the proposed approach while requiring a lower complexity compared to the conventional approach employing iterative searches

    Enhancing security of MME handover via fractional programming and Firefly algorithm

    Get PDF
    Key update and residence management have been investigated as an effective solution to cope with desynchronisation attacks in Mobility Management Entity (MME) handovers. In this paper, we first analyse the impacts of the Key Update Interval (KUI) and MME Residence Interval (MRI) on handover processes and their secrecy performance in terms of the Number of Exposed Packets (NEP), Signaling Overhead Rate (SOR) and Outage Probability of Vulnerability (OPV). Specifically, the bounds of the derived NEP and SOR not only capture their behaviours at the boundary of the KUI and MRI, but also show the trade-off between the NEP and SOR. Additionally, through the analysis of the OPV, it is shown that the handover security can be enhanced by shortening the KUI and the desynchonisation attacks can be avoided with high-mobility users. The above facts accordingly motivate us to propose a Multi- objective Optimisation (MO) problem to find the optimal KUI and MRI that minimise both the NEP and SOR subject to the constraint on the OPV. To this end, two scalarisation techniques are adopted to transform the proposed MO problem into single- objective optimisation problems, i.e., an achievement-function method via Fractional Programming (FP) and a weighted-sum method. Based on the derived bounds on NEP and SOR, the FP approach can be optimally solved via a simple numerical method. For the weighted-sum method, the Firefly Algorithm (FA) is utilised to find the optimal solution. The results show that both techniques can solve the proposed MO problem with a significantly reduced searching complexity compared to the conventional heuristic iterative search technique

    In vitro mutagenesis of Cymbidium La bell “Anna Belle” by γ-rays irradiation and oligochitosan interaction

    Full text link
    The optimum media for multiplication of protocorm like bodies (PLBs) and shoot buds of Cymbidium La bell “Anna Belle” were studied in order to prepare the in vitro samples for irradiation. The values of LD50 (lethal dose of 50% samples) of PLBs, shoot buds and plantlets of tested Cymbidium after cultivation of 4 months were also determined about 35.0, 41.0 and 83.1 Gy, respectively. The addition of oligochitosan played as an very important trigger for promotion on the generation of shoot bud from PLBs after irradiation. The in vitro variations have been generated by γ-rays irradiation of PLBs with doses in range of 20 - 50 Gy. The highest mutant frequency (3.83‰) of C. La bell was found by the irradiation of PLB samples at 30 Gy. The different properties of obtained in vitro variations compared to wild types were found to be chlorophyll, short leaves, long leaves, and violet pericardium variations. The genetic relationships among generated variant lines in M1V4 and wild type were analyzed using RAPD techniques

    On the Total Energy Efficiency of Cell-Free Massive MIMO

    Get PDF
    We consider the cell-free massive multiple-input multiple-output (MIMO) downlink, where a very large number of distributed multiple-antenna access points (APs) serve many single-antenna users in the same time-frequency resource. A simple (distributed) conjugate beamforming scheme is applied at each AP via the use of local channel state information (CSI). This CSI is acquired through time-division duplex operation and the reception of uplink training signals transmitted by the users. We derive a closed-form expression for the spectral efficiency taking into account the effects of channel estimation errors and power control. This closed-form result enables us to analyze the effects of backhaul power consumption, the number of APs, and the number of antennas per AP on the total energy efficiency, as well as, to design an optimal power allocation algorithm. The optimal power allocation algorithm aims at maximizing the total energy efficiency, subject to a per-user spectral efficiency constraint and a per-AP power constraint. Compared with the equal power control, our proposed power allocation scheme can double the total energy efficiency. Furthermore, we propose AP selections schemes, in which each user chooses a subset of APs, to reduce the power consumption caused by the backhaul links. With our proposed AP selection schemes, the total energy efficiency increases significantly, especially for large numbers of APs. Moreover, under a requirement of good quality-of-service for all users, cell-free massive MIMO outperforms the colocated counterpart in terms of energy efficiency

    Opportunistic secure transmission for wireless relay networks with modify-and-forward protocol

    Get PDF
    This paper investigates the security at the physical layer in cooperative wireless networks (CWNs) where the data transmission between nodes can be realised via either direct transmission (DT) or relaying transmission (RT) schemes. Inspired by the concept of physical-layer network coding (PNC), a secure PNC-based modify-and-forward (SPMF) is developed to cope with the imperfect shared knowledge of the message modification between relay and destination in the conventional modify-and-forward (MF). In this paper, we first derive the secrecy outage probability (SOP) of the SPMF scheme, which is shown to be a general expression for deriving the SOP of any MF schemes. By comparing the SOPs of various schemes, the usage of the relay is shown to be not always necessary and even causes a poorer performance depending on target secrecy rate and quality of channel links. To this extent, we then propose an opportunistic secure transmission protocol to minimise the SOP of the CWNs. In particular, an optimisation problem is developed in which secrecy rate thresholds (SRTs) are determined to find an optimal scheme among various DT and RT schemes for achieving the lowest SOP. Furthermore, the conditions for the existence of SRTs are derived with respect to various channel conditions to determine if the relay could be relied on in practice

    Rate of convergence in the Smoluchowski-Kramers approximation for mean-field stochastic differential equations

    Get PDF
    In this paper we study a second-order mean-field stochastic differential systems describing the movement of a particle under the influence of a time-dependent force, a friction, a mean-field interaction and a space and time-dependent stochastic noise. Using techniques from Malliavin calculus, we establish explicit rates of convergence in the zero-mass limit (Smoluchowski-Kramers approximation) in the LpL^p-distances and in the total variation distance for the position process, the velocity process and a re-scaled velocity process to their corresponding limiting processes

    An Investigation of Barriers to Adopt Green Innovation Among Manufacturing Organizations in Vietnam

    Get PDF
    This research aims to identify the main barriers to green innovation in Vietnam manufacturing organizations. This study began by reviewing the relevant literature and providing a solid theoretical framework to understand the determinants of green innovation for manufacturing firms in the global context. It also helps internal and external stakeholders figure out what influence and how to implement green innovation more efficiently by removing all impediments. Additionally, this article is considered a valuable and rational evidence for prioritizing and directing innovation policies in the manufacturing industry. Based on numerical data from 143 employees at middleand upper-level managers among manufacturing companies around Vietnam, the study found that deficiency of financial resources primarily significantly impacts green innovation adoption, followed by the uncertainty of market demand and lack of government support. However, with limited observations, the investigation did not observe the dynamic effect of green innovation over periods and only focused on the manufacturing sector instead of different industries for generalizing the research results. Moreover, the circumstances of green innovation would be diverse in other nations. Keywords: green innovation, manufacturing organizations, government supports, financial barriers, market barrier
    corecore