502 research outputs found

    Transition to turbulence in pulsating pipe flow

    Full text link
    Fluid flows in nature and applications are frequently subject to periodic velocity modulations. Surprisingly, even for the generic case of flow through a straight pipe, there is little consensus regarding the influence of pulsation on the transition threshold to turbulence: while most studies predict a monotonically increasing threshold with pulsation frequency (i.e. Womersley number, α\alpha), others observe a decreasing threshold for identical parameters and only observe an increasing threshold at low α\alpha. In the present study we apply recent advances in the understanding of transition in steady shear flows to pulsating pipe flow. For moderate pulsation amplitudes we find that the first instability encountered is subcritical (i.e. requiring finite amplitude disturbances) and gives rise to localized patches of turbulence ("puffs") analogous to steady pipe flow. By monitoring the impact of pulsation on the lifetime of turbulence we map the onset of turbulence in parameter space. Transition in pulsatile flow can be separated into three regimes. At small Womersley numbers the dynamics are dominated by the decay turbulence suffers during the slower part of the cycle and hence transition is delayed significantly. As shown in this regime thresholds closely agree with estimates based on a quasi steady flow assumption only taking puff decay rates into account. The transition point predicted in the zero α\alpha limit equals to the critical point for steady pipe flow offset by the oscillation Reynolds number. In the high frequency limit puff lifetimes are identical to those in steady pipe flow and hence the transition threshold appears to be unaffected by flow pulsation. In the intermediate frequency regime the transition threshold sharply drops (with increasing α\alpha) from the decay dominated (quasi steady) threshold to the steady pipe flow level

    Comprehensive gait analysis of healthy older people: unveiling reasons for lack of long-distance walking

    Get PDF
    Many older adults do not adhere to the recommended physical activity levels. This study examines the gait changes upon long-distance walking among healthy older adults. Gait tests of 24 adults aged 65 or more were conducted at the baseline, at the end of 30 and 60 minutes of treadmill walk. Spatial temporal, kinematic and kinetic gait data were computed. Perceived level of exertion was evaluated for each subject. Ten subjects (Group B) perceived higher exertion level than the remaining fourteen subjects (Group A). After walking, group B had significant reductions in dominant-side ankle joint range of motion and power, suggesting lower-leg muscle fatigue, which appeared to be compensated by significantly increased non-dominant side knee and hip motions. These changes were not observed in Group A. Differences in gait parameters between Group A and B implied that some biomechanical factors might contribute to the lack of walking of some older adults

    Comprehensive gait analysis of healthy older people: unveiling reasons for lack of long-distance walking

    Get PDF
    Many older adults do not adhere to the recommended physical activity levels. This study examines the gait changes upon long-distance walking among healthy older adults. Gait tests of 24 adults aged 65 or more were conducted at the baseline, at the end of 30 and 60 minutes of treadmill walk. Spatial temporal, kinematic and kinetic gait data were computed. Perceived level of exertion was evaluated for each subject. Ten subjects (Group B) perceived higher exertion level than the remaining fourteen subjects (Group A). After walking, group B had significant reductions in dominant-side ankle joint range of motion and power, suggesting lower-leg muscle fatigue, which appeared to be compensated by significantly increased non-dominant side knee and hip motions. These changes were not observed in Group A. Differences in gait parameters between Group A and B implied that some biomechanical factors might contribute to the lack of walking of some older adults

    FDLS: A Deep Learning Approach to Production Quality, Controllable, and Retargetable Facial Performances

    Full text link
    Visual effects commonly requires both the creation of realistic synthetic humans as well as retargeting actors' performances to humanoid characters such as aliens and monsters. Achieving the expressive performances demanded in entertainment requires manipulating complex models with hundreds of parameters. Full creative control requires the freedom to make edits at any stage of the production, which prohibits the use of a fully automatic ``black box'' solution with uninterpretable parameters. On the other hand, producing realistic animation with these sophisticated models is difficult and laborious. This paper describes FDLS (Facial Deep Learning Solver), which is Weta Digital's solution to these challenges. FDLS adopts a coarse-to-fine and human-in-the-loop strategy, allowing a solved performance to be verified and edited at several stages in the solving process. To train FDLS, we first transform the raw motion-captured data into robust graph features. Secondly, based on the observation that the artists typically finalize the jaw pass animation before proceeding to finer detail, we solve for the jaw motion first and predict fine expressions with region-based networks conditioned on the jaw position. Finally, artists can optionally invoke a non-linear finetuning process on top of the FDLS solution to follow the motion-captured virtual markers as closely as possible. FDLS supports editing if needed to improve the results of the deep learning solution and it can handle small daily changes in the actor's face shape. FDLS permits reliable and production-quality performance solving with minimal training and little or no manual effort in many cases, while also allowing the solve to be guided and edited in unusual and difficult cases. The system has been under development for several years and has been used in major movies.Comment: DigiPro '22: The Digital Production Symposiu

    Directed Diffusion: Direct Control of Object Placement through Attention Guidance

    Full text link
    Text-guided diffusion models such as DALLE-2, Imagen, and Stable Diffusion are able to generate an effectively endless variety of images given only a short text prompt describing the desired image content. In many cases the images are of very high quality. However, these models often struggle to compose scenes containing several key objects such as characters in specified positional relationships. The missing capability to "direct" the placement of characters and objects both within and across images is crucial in storytelling, as recognized in the literature on film and animation theory. In this work, we take a particularly straightforward approach to providing the needed direction. Drawing on the observation that the cross-attention maps for prompt words reflect the spatial layout of objects denoted by those words, we introduce an optimization objective that produces ``activation'' at desired positions in these cross-attention maps. The resulting approach is a step toward generalizing the applicability of text-guided diffusion models beyond single images to collections of related images, as in storybooks. To the best of our knowledge, our Directed Diffusion method is the first diffusion technique that provides positional control over multiple objects, while making use of an existing pre-trained model and maintaining a coherent blend between the positioned objects and the background. Moreover, it requires only a few lines to implement.Comment: Our project page: https://hohonu-vicml.github.io/DirectedDiffusion.Pag

    Direct Covalent Chemical Functionalization of Unmodified Two-Dimensional Molybdenum Disulfide

    Get PDF
    Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) like molybdenum disulfide (MoS2) are generating significant excitement due to their unique electronic, chemical, and optical properties. Covalent chemical functionalization represents a critical tool for tuning the properties of TMDCs for use in many applications. However, the chemical inertness of semiconducting TMDCs has thus far hindered the robust chemical functionalization of these materials. Previous reports have required harsh chemical treatments or converting TMDCs into metallic phases prior to covalent attachment. Here, we demonstrate the direct covalent functionalization of the basal planes of unmodified semiconducting MoS2 using aryl diazonium salts without any pretreatments. Our approach preserves the semiconducting properties of MoS2, results in covalent C-S bonds, is applicable to MoS2 derived from a range of different synthesis methods, and enables a range of different functional groups to be tethered directly to the MoS2 surface. Using density functional theory calculations including van der Waals interactions and atomic-scale scanning probe microscopy studies, we demonstrate a novel reaction mechanism in which cooperative interactions enable the functionalization to propagate along the MoS2 basal plane. The flexibility of this covalent chemistry employing the diverse aryl diazonium salt family is further exploited to tether active proteins to MoS2, suggesting future biological applications and demonstrating its use as a versatile and powerful chemical platform for enhancing the utility of semiconducting TMDCsComment: To appear in Chemistry Materials (In press

    Pharmacokinetics and pharmacodynamics of a novel Acetylcholinesterase Inhibitor, DMNG-3

    Get PDF
    DMNG-3 (3β-Methyl-[2-(4-nitrophenoxy)ethyl]-amino]con-5-enine), is a new and the potentially most potent acetylcholinesterase inhibitor recently obtained from conessine by N-demethylation and nucleophilic substitution reaction. In the present study, a step‑down passive avoidance test was used to investigate whether DMNG-3 could modulate impairment of learning and memory induced by scopolamine, and a high performance liquid chromatography (HPLC) method for the determination of DMNG-3 in biological samples was applied to study its pharmacokinetics and tissues distribution. Separation was achieved on C18 column using a mobile phase consisting methanol‑water (70:30, v/v) at a flow rate of 1.0 ml/min. The intra- and inter-day precisions were good and the RSD was all lower than 1.30%. The mean absolute recovery of DMNG-3 in plasma ranged from 88.55 to 96.45%. Our results showed oral administration of DMNG-3 (10, 25, 50 mg/kg/day) can significantly improve the latency and number of errors and had a positive effect of improvement of learning and memory in mice in passive avoidance tests. The elimination half-life (T1/2) was 14.07±1.29, 15.87±1.03 h, and the total clearance (CL) values were 0.70±0.11, 0.78±0.13 L/h/kg, respectively. The pharmacokinetic studies showed that DMNG-3 has a slowly clearance and large distribution volume in experimental animals, and its disposition is linear over the range of doses tested. The liver, small intestine, stomach, and large intestine were the major distribution tissues of DMNG-3 in mice. It was found that DMNG-3 could be detected in brain, suggesting that DMNG-3 can cross the blood-brain barrier. The present study shows that DMNG-3 can be possible developed as a new drug for the treatment of Alzheimer's disease in the future

    Case report: Sex-specific characteristics of epilepsy phenotypes associated with Xp22.31 deletion: A case report and review

    Get PDF
    Deletion in the Xp22.31 region is increasingly suggested to be involved in the etiology of epilepsy. Little is known regarding the genomic and clinical delineations of X-linked epilepsy in the Chinese population or the sex-stratified difference in epilepsy characteristics associated with deletions in the Xp22.31 region. In this study, we reported two siblings with a 1.69 Mb maternally inherited microdeletion at Xp22.31 involving the genes VCX3A, HDHD1, STS, VCX, VCX2, and PNPLA4 presenting with easily controlled focal epilepsy and language delay with mild ichthyosis in a Chinese family with a traceable 4-generation history of skin ichthyosis. Both brain magnetic resonance imaging results were normal, while EEG revealed epileptic abnormalities. We further performed an exhaustive literature search, documenting 25 patients with epilepsy with gene defects in Xp22.31, and summarized the epilepsy heterogeneities between sexes. Males harboring the Xp22.31 deletion mainly manifested with child-onset, easily controlled focal epilepsy accompanied by X-linked ichthyosis; the deletions were mostly X-linked recessive, with copy number variants (CNVs) in the classic region of deletion (863.38 kb–2 Mb). In contrast, epilepsy in females tended to be earlier-onset, and relatively refractory, with pathogenic CNV sizes varying over a larger range (859 kb–56.36 Mb); the alterations were infrequently inherited and almost combined with additional CNVs. A candidate region encompassing STS, HDHD1, and MIR4767 was the likely pathogenic epilepsy-associated region. This study filled in the knowledge gap regarding the genomic and clinical delineations of X-linked recessive epilepsy in the Chinese population and extends the understanding of the sex-specific characteristics of Xp22.31 deletion in regard to epilepsy

    Chromosomal aberrations in pediatric patients with moderate/severe developmental delay/intellectual disability with abundant phenotypic heterogeneities: A single-center study

    Get PDF
    Background: This study aimed to examine the clinical usefulness of chromosome microarray (CMA) for selective implementation in patients with unexplained moderate or severe developmental delay/intellectual disability (DD/ID) and/or combined with different dysphonic features in the Han Chinese population. Methods: We retrospectively analyzed data on 122 pediatric patients with unexplained isolated moderate/severe DD/ID with or without autism spectrum disorders, epilepsy, dystonia, and congenital abnormalities from a single-center neurorehabilitation clinic in southern China. Results: A total of 46 probands (37.7%) had abnormal CMA results among the 122 study patients. With the exclusion of aneuploidies, uniparental disomies, and multiple homozygotes, 37 patients harbored 39 pathogenic copy number variations (pCNVs) (median [interquartile range] size: 3.57 [1.6 to 7.1] Mb; 33 deletions and 6 duplications), enriched in chromosomes 5, 7, 15, 17, and 22, with a markedly high prevalence of Angelman/Prader-Willi syndrome (24.3% [nine of 37]). Three rare deletions in the regions 5q33.2q34, 17p13.2, and 13q33.2 were reported, with specific delineation of clinical phenotypes. The frequencies of pCNVs were 18%, 33.3%, 38.89%, 41.67%, and 100% for patients with 1, 2, 3, 4, and 5 study phenotypes, respectively; patients with more concomitant abnormalities in the heart, brain, craniofacial region, and/or other organs had a higher CMA diagnostic yield and pCNV prevalence (P \u3c 0.05). Conclusions: Clinical application of CMA as a first-tier test among patients with moderate/severe DD/ID combined with congenital structural anomalies improved diagnostic yields and the quality of clinical management in this series of patients
    corecore