159 research outputs found
Dual symmetry and the vacuum energy
In this work we present a new hidden symmetry in gravity for the scale factor
in the FRW model, for . This exact symmetry vanishes the cosmological
constant. We interpret this hidden symmetry as a dual symmetry in the sense
that appears in the string theory.Comment: 7 pages, no figures, work sent to Class. Quantum Gra
An ovine model of hyperdynamic endotoxemia and vital organ metabolism
BACKGROUND: Animal models of endotoxemia are frequently used to understand the pathophysiology of sepsis and test new therapies. However, important differences exist between commonly used experimental models of endotoxemia and clinical sepsis. Animal models of endotoxemia frequently produce hypodynamic shock in contrast to clinical hyperdynamic shock. This difference may exaggerate the importance of hypoperfusion as a causative factor in organ dysfunction. This study sought to develop an ovine model of hyperdynamic endotoxemia and assess if there is evidence of impaired oxidative metabolism in the vital organs. METHODS: Eight sheep had microdialysis catheters implanted into the brain, heart, liver, kidney and arterial circulation. Shock was induced with a 4hr escalating dose infusion of endotoxin. After 3hrs vasopressor support was initiated with noradrenaline and vasopressin. Animals were monitored for 12hrs after endotoxemia. Blood samples were recovered for haemoglobin, white blood cell count, creatinine and proinflammatory cytokines (IL-1Beta, IL-6 & IL-8). RESULTS: The endotoxin infusion was successful in producing distributive shock with the mean arterial pressure decreasing from 84.5 ± 12.8 mmHg to 49 ± 8.03 mmHg (p < 0.001). Cardiac index remained within the normal range decreasing from 3.33 ± 0.56 l/min/m to 2.89l ± 0.36 l/min/m (p = 0.0845). Lactate/pyruvate ratios were not significantly abnormal in the heart, brain, kidney or arterial circulation. Liver microdialysis samples demonstrated persistently high lactate/pyruvate ratios (mean 37.9 ± 3.3). CONCLUSIONS: An escalating dose endotoxin infusion was successful in producing hyperdynamic shock. There was evidence of impaired oxidative metabolism in the liver suggesting impaired splanchnic perfusion. This may be a modifiable factor in the progression to multiple organ dysfunction and death
Vortex Polarity Switching in Magnets with Surface Anisotropy
Vortex core reversal in magnetic particle is essentially influenced by a
surface anisotropy. Under the action of a perpendicular static magnetic field
the vortex core undergoes a shape deformationof pillow- or barrel-shaped type,
depending on the type of the surface anisotropy. This deformation plays a key
point in the switching mechanism: We predict that the vortex polarity switching
is accompanied (i) by a linear singularity in case of Heisenberg magnet with
bulk anisotropy only and (ii) by a point singularities in case of surface
anisotropy or exchange anisotropy. We study in details the switching process
using spin-lattice simulations and propose a simple analytical description
using a wired core model, which provides an adequate description of the Bloch
point statics, its dynamics and the Bloch point mediated switching process. Our
analytical predictions are confirmed by spin-lattice simulations for Heisenberg
magnet and micromagnetic simulations for nanomagnet with account of a dipolar
interaction.Comment: 17 pages, 15 figure
Increased Oxidative Burden Associated with Traffic Component of Ambient Particulate Matter at Roadside and Urban Background Schools Sites in London
As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP). Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM) samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OPAA m−3) and glutathione (OPGSH m−3) depletion, the highest OP per cubic metre of air was in the largest size fraction, PM1.9–10.2. However, when expressed per unit mass of particles OPAA µg−1 showed no significant dependence upon particle size, while OPGSH µg−1 had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V) or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between site types.\ud
\u
Recommended from our members
Interspecies differences in protein expression do not impact the spatiotemporal regulation of glycoprotein VI mediated activation
Background
Accurate protein quantification is a vital prerequisite for generating meaningful predictions when using systems biology approaches, a method that is increasingly being used to unravel the complexities of sub cellular interactions and as part of the drug discovery process. Quantitative proteomics, flow cytometry and western blotting have been extensively used to define human platelet protein copy numbers, yet for mouse platelets, a model widely used for platelet research, evidence is largely limited to a single proteomic dataset in which the total amount of proteins were generally comparatively higher than those found in human platelets.
Objectives
To investigate the functional implications of discrepancies between levels of mouse and human proteins in the GPVI signalling pathway using a systems pharmacology model of GPVI
Methods
The protein copy number of mouse platelet receptors was determined using flow cytometry. The Virtual Platelet, a mathematical model of Glycoprotein VI (GPVI) signalling, was used to determine the consequences of protein copy number differences observed between human and mouse platelets.
Results and conclusion
Despite the small size of mouse platelets compared to human platelets they possessed a greater density of surface receptors alongside a higher concentration of intracellular signalling proteins. Surprisingly the predicted temporal profile of Syk activity was similar in both species with predictions supported experimentally. Super resolution microscopy demonstrates that the spatial distribution of Syk is similar between species, suggesting that the spatial distribution of receptors and signalling molecules in activated platelets, rather than their copy number, is important for signalling pathway regulation
An explicit formula for the coefficients in Laplace's method
Laplace's method is one of the fundamental techniques in the asymptotic
approximation of integrals. The coefficients appearing in the resulting
asymptotic expansion, arise as the coefficients of a convergent or asymptotic
series of a function defined in an implicit form. Due to the tedious
computation of these coefficients, most standard textbooks on asymptotic
approximations of integrals do not give explicit formulas for them.
Nevertheless, we can find some more or less explicit representations for the
coefficients in the literature: Perron's formula gives them in terms of
derivatives of an explicit function; Campbell, Fr\"oman and Walles simplified
Perron's method by computing these derivatives using an explicit recurrence
relation. The most recent contribution is due to Wojdylo, who rediscovered the
Campbell, Fr\"oman and Walles formula and rewrote it in terms of partial
ordinary Bell polynomials. In this paper, we provide an alternative
representation for the coefficients, which contains ordinary potential
polynomials. The proof is based on Perron's formula and a theorem of Comtet.
The asymptotic expansions of the gamma function and the incomplete gamma
function are given as illustrations.Comment: 14 pages, to appear in Constructive Approximatio
Cerebral microcirculation and histological mapping after severe head injury: a contusion and acceleration experimental model
Background: Cerebral microcirculation after severe head injury is heterogeneous and temporally variable. Microcirculation is dependent upon the severity of injury, and it is unclear how histology relates to cerebral regional blood flow. Objective: This study assesses the changes of cerebral microcirculation blood flow over time after an experimental brain injury model in sheep and contrasts these findings with the histological analysis of the same regions with the aim of mapping cerebral flow and tissue changes after injury. Methods: Microcirculation was quantified using flow cytometry of color microspheres injected under intracardiac ultrasound to ensure systemic and homogeneous distribution. Histological analysis used amyloid precursor protein staining as a marker of axonal injury. A mapping of microcirculation and axonal staining was performed using adjacent layers of tissue from the same anatomical area, allowing flow and tissue data to be available from the same anatomical region. A mixed effect regression model assessed microcirculation during 4 h after injury, and those results were then contrasted to the amyloid staining qualitative score. results: Microcirculation values for each subject and tissue region over time, including baseline, ranged between 20 and 80 ml/100 g/min with means that did not differ statistically from baseline flows. However, microcirculation values for each subject and tissue region were reduced from baseline, although their confidence intervals crossing the horizontal ratio of 1 indicated that such reduction was not statistically significant. Histological analysis demonstrated the presence of moderate and severe score on the amyloid staining throughout both hemispheres. conclusion: Microcirculation at the ipsilateral and contralateral site of a contusion and the ipsilateral thalamus and medulla showed a consistent decline over time. Our data suggest that after severe head injury, microcirculation in predefined areas of the brain is reduced from baseline with amyloid staining in those areas reflecting the early establishment of axonal injuryJudith Bellapart, Kylie Cuthbertson, Kimble Dunster, Sara Diab, David G. Platts, Owen Christopher Raffel, Levon Gabrielian, Adrian Barnett, Jenifer Paratz, Rob Boots and John F. Frase
- …