1,472 research outputs found
Formation of misfit dislocations in strained-layer GaAs/In<sub>x</sub>Ga<sub>1âx</sub>As/GaAs heterostructures during postfabrication thermal processing
It is demonstrated that relaxation of GaAs/InxGa1âxAs/GaAs strained-layer heterostructures can be brought about by postfabrication thermal processing. Misfit dislocations are introduced into the structure during thermal processing, even though the thickness of the strained layer is well below the critical value predicted by the MatthewsâBlakeslee model. The misfit dislocations are observed to be of both 60° mixed type and 90° pure edge type. As no relaxation occurs at the lower temperatures encountered during fabrication by molecular-beam epitaxy, it can be inferred that the critical condition for the formation of misfit dislocations is not only a function of strained-layer thickness and composition, but also of temperature. This observation cannot be accounted for by differential thermal expansion or diffusion across the strained-layer interfaces, but the temperature-dependent Peierls force may offer an explanation. The high temperature required to produce relaxation of these structures suggests that they are sufficiently thermally stable for most practical applications
Recommended from our members
Development and performance of iron based oxygen carriers containing calcium ferrites for chemical looping combustion and production of hydrogen
Chemical looping combustion (CLC) is a cyclic process in which an oxygen carrier (OC), is firstly reduced by a fuel, e.g. syngas, and then oxidised in air to produce heat. If the OC is Fe2O3, the oxidation can take place in steam to produce hydrogen, i.e. chemical looping hydrogen production (CLH). This paper presents an investigation of CaO modified Fe2O3 OCs for CLC and CLH. The performance of the mechanically mixed OCs were examined in a thermogravimetric analyser and a fluidised bed. It was found that the addition of CaO gives cyclic stability and additional capacity to produce hydrogen via CLH, at the expense of reduced oxygen carrying capacity for CLC, owing to the formation of calcium ferrites, such as Ca2Fe2O5.The authors would like to thank Prof. Clare Grey for her invaluable help in the XRD analysis and Z. Saracevic for support in operating the gas adsorption analyser. This work was supported by the Engineering and Physical Sciences Research Council (EPSRC grant EP/I070912/1). The first author is grateful to IDB (Islamic Development Bank) - Cambridge International Scholarship body for financial support for PhD study. W. L acknowledges funding from the National Research Foundation (NRF), Prime Ministerâs Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.ijhydene.2015.11.06
Water sampling for the detection of Phytophthora cinnamomi: is it a valid tool or are we just fishing?
Stream baiting is a useful tool to determine if Phytophthora species are present in a catchment. The method assumes that Phytophthora species accumulate in water bodies and then spread throughout catchments with water movement. However, it is poorly understood how well Phytophthora species accumulate, survive and move within water catchments. This study investigated the ecology of P. cinnamomi collected from seven water bodies within a single mine site. Each water body varied in terms of the organic particulates, dissolved chemicals, water influx and water recycling regimes. Water quality had a significant impact on the sporulation and infection of plant baits by P. cinnamomi in each water body. The findings and implications of stream baiting as a catchmentâlevel monitoring tool will be discussed
Exploration of the material property space for chemical looping air separation applied to carbon capture and storage
Oxy-fuel combustion is one route to large scale carbon capture and storage. Fuel is combusted in oxygen rather than air, allowing pure CO2 to be captured and sequestered. Currently, the required oxygen is produced via cryogenic air separation, which imposes a significant energy penalty. Chemical looping air separation (CLAS) is an alternative process for the production of oxygen, and relies on the repeated oxidation and reduction of solid oxygen carriers (typically metal oxides). The energy efficiency is governed by the thermodynamic properties of the oxygen carrier material, and how well the CLAS process can be heat-integrated with the process consuming oxygen. In this study, key thermodynamic properties have been identified and assessed using a steady state model of a CLAS-oxy-fuel power plant. It is demonstrated that energy penalties as low as 1.5 percentage points can be obtained for a narrow range of material properties. Based on density functional theory calculations, 14 oxygen carrier systems, which are novel or have received little attention, have been identified that could potentially achieve this minimal energy penalt
Pressure coefficients of Raman modes of carbon nanotubes resolved by chirality: Environmental effect on graphene sheet
Studies of the mechanical properties of single-walled carbon nanotubes are
hindered by the availability only of ensembles of tubes with a range of
diameters. Tunable Raman excitation spectroscopy picks out identifiable tubes.
Under high pressure, the radial breathing mode shows a strong environmental
effect shown here to be largely independent of the nature of the environment .
For the G-mode, the pressure coefficient varies with diameter consistent with
the thick-wall tube model. However, results show an unexpectedly strong
environmental effect on the pressure coefficients. Reappraisal of data for
graphene and graphite gives the G-mode Grueuneisen parameter gamma = 1.34 and
the shear deformation parameter beta = 1.34.Comment: Submitted to Physical Review
Evaluation of a resistance training program for adults with or at risk of developing diabetes: an effectiveness study in a community setting
Background: To examine the effects of a community-based resistance training program (Lift for Life) on waist circumference and functional measures in adults with or at risk of developing type 2 diabetes.Methods: Lift for Life is a research-to-practice initiative designed to disseminate an evidence-based resistance training program for adults with or at risk of developing type 2 diabetes to existing health and fitness facilities in the Australian community. A retrospective assessment was undertaken on 86 participants who had accessed the program within 4 active providers in Melbourne, Australia. The primary goal of this longitudinal study was to assess the effectiveness of a community-based resistance training program, thereby precluding a randomized, controlled study design. Waist circumference, lower body (chair sit-to-stand) and upper body (arm curl test) strength, and agility (timed up-and-go) measures were collected at baseline and repeated at 2 months (n = 86) and again at 6 months (n = 32).Results: Relative to baseline, there was a significant decrease in mean waist circumference (-1.9 cm, 95% CI: -2.8 to -1.0) and the timed agility test (-0.8 secs, 95% CI: -1.0 to -0.6); and significant increases in lower body (number of repetitions: 2.2, 95% CI: 1.4-3.0) and upper body (number of repetitions: 3.8, 95% CI: 3.0-4.6) strength at the completion of 8 weeks. Significant differences remained at the 16 week assessment. Pooled time series regression analyses adjusted for age and sex in the 32 participants who had complete measures at baseline and 24-week follow-up revealed significant time effects for waist circumference and functional measures, with the greatest change from baseline observed at the 24-week assessment.Conclusions: These findings indicate that an evidence-based resistance training program administered in the community setting for those with or at risk of developing type 2 diabetes, can lead to favorable health benefits, including reductions in central obesity and improved physical function
Graphite under uniaxial compression along the c axis: A parameter to relate out-of-plane strain to in-plane phonon frequency
Stacking graphene sheets forms graphite. Two in-plane vibrational modes of
graphite, E1u and E2g(2), are derived from graphene E2g mode, the shifts of
which under compression are all considered as results of in-plane bond
shortening. Values of Gruneisen parameter have been reported to quantify such
relation. However, the reason why the shift rates of these three modes with
pressure differ is unclear. In this work, we introduce a new parameter to
quantify the contribution of out-of-plane strain to the in-plane vibrational
frequencies, suggesting that the compression of \pi-electrons plays a
non-negligible part in both graphite and graphene under high pressure.Comment: 8 pages, 5 figures, 1 tabl
The Chemistry of the Triterpenes and Related Compounds. Part XXXII.* The Chemistry of Hydroxyhopanone
The functional groups of hydroxyhopanone, a saturated C30H50O2 pentacyclic triterpene keto-alcohol have been characterised and a tentative structure for hydroxyhopanone is proposed
Joint associations of multiple leisure-time sedentary behaviours and physical activity with obesity in Australian adults
BackgroundTelevision viewing and physical inactivity are independently associated with risk of obesity. However, how the combination of multiple leisure-time sedentary behaviours (LTSB) and physical activity (LTPA) may contribute to the risk of obesity is not well understood. We examined the joint associations of multiple sedentary behaviours and physical activity with the odds of being overweight or obese.MethodsA mail survey collected the following data from adults living in Adelaide, Australia (n = 2210): self-reported height, weight, six LTSB, LTPA and sociodemographic variables. Participants were categorised into four groups according to their level of LTSB (dichotomised into low and high levels around the median) and LTPA (sufficient: ≥ 2.5 hr/wk; insufficient: < 2.5 hr/wk). Logistic regression analysis examined the odds of being overweight or obese (body mass index ≥ 25 kg/m2) by the combined categories.ResultsThe odds of being overweight or obese relative to the reference category (low sedentary behaviour time and sufficient physical activity) were: 1.54 (95% confidence interval [CI]: 1.20–1.98) for the combination of low sedentary behaviour time and insufficient physical activity; 1.55 (95% CI: 1.20–2.02) for the combination of high sedentary behaviour time and sufficient physical activity; and 2.26 (95% CI: 1.75–2.92) for the combination of high sedentary behaviour time and insufficient physical activity.ConclusionThose who spent more time in sedentary behaviours (but were sufficiently physically active) and those who were insufficiently active (but spent less time in sedentary behaviour) had a similar risk of being overweight or obese. Reducing leisure-time sedentary behaviours may be as important as increasing leisure-time physical activity as a strategy to fight against obesity in adults.<br /
- âŠ