84 research outputs found

    An artificial therapist (manage your life online) to support the mental health of youth: Co-design and case series

    Get PDF
    Background: The prevalence of child and adolescent mental health issues is increasing faster than the number of services available, leading to a shortfall. Mental health chatbots are a highly scalable method to address this gap. Manage Your Life Online (MYLO) is an artificially intelligent chatbot that emulates the method of levels therapy. Method of levels is a therapy that uses curious questioning to support the sustained awareness and exploration of current problems. Objective: This study aimed to assess the feasibility and acceptability of a co-designed interface for MYLO in young people aged 16 to 24 years with mental health problems. Methods: An iterative co-design phase occurred over 4 months, in which feedback was elicited from a group of young people (n=7) with lived experiences of mental health issues. This resulted in the development of a progressive web application version of MYLO that could be used on mobile phones. We conducted a case series to assess the feasibility and acceptability of MYLO in 13 young people over 2 weeks. During this time, the participants tested MYLO and completed surveys including clinical outcomes and acceptability measures. We then conducted focus groups and interviews and used thematic analysis to obtain feedback on MYLO and identify recommendations for further improvements. Results: Most participants were positive about their experience of using MYLO and would recommend MYLO to others. The participants enjoyed the simplicity of the interface, found it easy to use, and rated it as acceptable using the System Usability Scale. Inspection of the use data found evidence that MYLO can learn and adapt its questioning in response to user input. We found a large effect size for the decrease in participants’ problem-related distress and a medium effect size for the increase in their self-reported tendency to resolve goal conflicts (the proposed mechanism of change) in the testing phase. Some patients also experienced a reliable change in their clinical outcome measures over the 2 weeks. Conclusions: We established the feasibility and acceptability of MYLO. The initial outcomes suggest that MYLO has the potential to support the mental health of young people and help them resolve their own problems. We aim to establish whether the use of MYLO leads to a meaningful reduction in participants’ symptoms of depression and anxiety and whether these are maintained over time by conducting a randomized controlled evaluation trial

    Residential Moving and Preventable Hospitalizations

    Get PDF
    OBJECTIVES: To investigate the association between moving home in the first year of life and subsequent emergency admissions for potentially preventable hospitalizations. METHODS: We undertook a cohort analysis of linked anonymized data on 237 842 children in the Welsh Electronic Cohort for Children. We included children born in Wales between April 1, 1999 and December 31, 2008. The exposure was the number of residential moves from birth up to 1 year. The main outcome was emergency admissions for potentially preventable hospitalizations (PPH) between the age of 1 and 5 years. RESULTS: After adjustment for confounders, we identified that moving home frequently in the first year of life was associated with an increased risk of emergency PPH between the ages of 1 and 5 when compared with not moving. We found significant differences associated with ≥2 moves for the following: ear, nose, and throat infections (incidence risk ratio [IRR], 1.44; 95% confidence interval [CI], 1.29–1.61); convulsions/epilepsy (IRR, 1.58; 95% CI, 1.23–2.04); injuries (IRR, 1.33; 95% CI, 1.18–1.51); dehydration/gastroenteritis (IRR, 1.51; 95% CI, 1.21–1.88); asthma (IRR, 1.61; 95% CI, 1.19–2.16); influenza/pneumonia (IRR, 1.15; 95% CI, 1.00–1.32); and dental conditions (IRR, 1.30; 95% CI, 1.03–1.64) for ≥1 moves. CONCLUSIONS: Children who move home in the first year of life are at substantially increased risk of emergency admissions for PPH in early childhood. Additional research that focuses on enhancing health and social support services for highly mobile families, educating parents about safety risks, and improving housing quality is warranted

    Fitness moderates glycemic responses to sitting and light activity breaks

    Get PDF
    Purpose: Regular engagement in sedentary behaviours can lead to major public health consequences. This study aimed to experimentally determine whether cardio-respiratory fitness modifies postprandial glycemia during prolonged sitting and investigated the potentially blunting influence this may have upon the benefits of interrupting postprandial sitting time with light activity breaks. Methods: Thirty–four adult volunteers (18female; 16male; mean±SD age: 40±9 years, BMI: 24.5±3 kg/m2) undertook two 7·5 hour experimental conditions in a randomized order: 1) Prolonged sitting; 2) Sitting interspersed with 5 minute light walking bouts every 30minutes. Blood samples were obtained while fasting and throughout the postprandial period following ingestion of two identical meals. Incremental Area Under the Curve (iAUC) was calculated for glucose and insulin throughout each experimental condition. Maximal exercise testing quantified VO2 peak as a measure of cardiorespiratory fitness (CRF) prior to experimental conditions. A repeated measures ANOVA investigated whether VO2 peak modified iAUC data between conditions. This trial is registered with ClinicalTrials.gov (Reg no.NCT0493309). Results: Interrupting prolonged sitting time with light walking breaks reduced blood glucose iAUC from 3.89 ± 0.7 to 2·51 ± 0.7 mmol·L-1·h (p = 0.015) and insulin iAUC from 241 ± 46 to 156 ± 24 mU·L-1·h (p = 0.013) after adjustment for VO2 peak and sex. A significant interaction between treatment response and VO2 peak was observed for glucose (p = 0.035), but not insulin (p = 0.062), whereby the treatment effect reduced with higher levels of fitness. Average blood glucose iAUC responses for a man at the 25th centile of CRF (42.5 mL∙kg-1∙min-1) within our cohort went from 5.80 to 2.98 mmol·L-1·h during the prolonged sitting and light walking breaks conditions respectively, whereas average responses for a man at the 75th centile of CRF (60.5 mL∙kg-1∙min-1) went from 1.99 to 1.78 mmol·L-1·h. Similar trends were observed for women. Conclusions: Individuals with low levels of CRF gained the most metabolic benefit from breaking prolonged sitting with regular bouts of light walking. Future interventions aimed at alleviating the deleterious impacts of sedentary behavior may be optimized by tailoring to cardio-respiratory fitness levels within the general population

    Stand More AT Work (SMArT Work): using the behaviour change wheel to develop an intervention to reduce sitting time in the workplace

    Get PDF
    Background: Sitting (sedentary behaviour) is widespread among desk-based office workers and a high level of sedentary behaviour is a risk factor for poor health. Reducing workplace sitting time is therefore an important prevention strategy. Interventions are more likely to be effective if they are theory and evidence-based. The Behaviour Change Wheel (BCW) provides a framework for intervention development. This article describes the development of the Stand More AT Work (SMArT Work) intervention, which aims to reduce sitting time among National Health Service (NHS) office-based workers in Leicester, UK. Methods: We followed the BCW guide and used the Capability, Opportunity and Motivation Behaviour (COM-B) model to conduct focus group discussions with 39 NHS office workers. With these data we used the taxonomy of Behaviour Change Techniques (BCTv1) to identify the most appropriate strategies for facilitating behaviour change in our intervention. To identify the best method for participants to self-monitor their sitting time, a sub-group of participants (n = 31) tested a number of electronic self-monitoring devices. Results: From our BCW steps and the BCT-Taxonomy we identified 10 behaviour change strategies addressing environmental (e.g. provision of height adjustable desks,), organisational (e.g. senior management support, seminar), and individual level (e.g. face-to-face coaching session) barriers. The Darma cushion scored the highest for practicality and acceptability for self-monitoring sitting. Conclusion: The BCW guide, COM-B model and BCT-Taxonomy can be applied successfully in the context of designing a workplace intervention for reducing sitting time through standing and moving more. The intervention was developed in collaboration with office workers (a participatory approach) to ensure relevance for them and their work situation. The effectiveness of this intervention is currently being evaluated in a randomised controlled trial

    Providing NHS staff with height-adjustable workstations and behaviour change strategies to reduce workplace sitting time: protocol for the Stand More AT (SMArT) Work cluster randomised controlled trial

    Get PDF
    BACKGROUND. High levels of sedentary behaviour (i.e., sitting) are a risk factor for poor health. With high levels of sitting widespread in desk-based office workers, office workplaces are an appropriate setting for interventions aimed at reducing sedentary behaviour. This paper describes the development processes and proposed intervention procedures of Stand More AT (SMArT) Work, a multi-component randomised control (RCT) trial which aims to reduce occupational sitting time in desk-based office workers within the National Health Service (NHS). METHODS/DESIGN. SMArT Work consists of 2 phases: 1) intervention development: The development of the SMArT Work intervention takes a community-based participatory research approach using the Behaviour Change Wheel. Focus groups will collect detailed information to gain a better understanding of the most appropriate strategies, to sit alongside the provision of height-adjustable workstations, at the environmental, organisational and individual level that support less occupational sitting. 2) intervention delivery and evaluation: The 12 month cluster RCT aims to reduce workplace sitting in the University Hospitals of Leicester NHS Trust. Desk-based office workers (n = 238) will be randomised to control or intervention clusters, with the intervention group receiving height-adjustable workstations and supporting techniques based on the feedback received from the development phase. Data will be collected at four time points; baseline, 3, 6 and 12 months. The primary outcome is a reduction in sitting time, measured by the activPALTM micro at 12 months. Secondary outcomes include objectively measured physical activity and a variety of work-related health and psycho-social measures. A process evaluation will also take place. DISCUSSION. This study will be the first long-term, evidence-based, multi-component cluster RCT aimed at reducing occupational sitting within the NHS. This study will help form a better understanding and knowledge base of facilitators and barriers to creating a healthier work environment and contribute to health and wellbeing policy. TRIAL REGISTRATION. ISRCTN10967042. Registered 2 February 2015

    Does frequent residential mobility in early years affect the uptake and timeliness of routine immunisations? An anonymised cohort study

    Get PDF
    Background: There are conflicting findings regarding the impact of residential mobility on immunisationstatus. Our aim was to determine whether there was any association between residential mobility andtake up of immunisations and whether they were delayed in administration. Methods: We carried out a cohort analysis of children born in Wales, UK. Uptake and time of immunisationwere collected electronically. We defined frequent movers as those who had moved: 2 or more times inthe period prior to the final scheduled on-time date (4 months) for 5 in 1 vaccinations; and 3 or moretimes in the period prior to the final scheduled on-time date (12 months) for MMR, pneumococcal andmeningitis C vaccinations. We defined immunisations due at 2–4 months delayed if they had not beengiven by age 1; and those due at 12–13 months as delayed if they had not been given by age 2. Results: Uptake rates of routine immunisations and whether they were given within the specified time-frame were high for both groups. There was no increased risk (odds ratios (95% confidence intervals)between frequent movers compared to non-movers for the uptake of: primary MMR 1.08 (0.88–1.32);booster Meningitis C 1.65 (0.93–2.92); booster pneumococcal 1.60 (0.59–4.31); primary 5 in 1 1.28(0.92–1.78); and timeliness: primary MMR 0.92 (0.79–1.07); booster Meningitis C 1.26 (0.77–2.07);booster pneumococcal 1.69 (0.23–12.14); and primary 5 in 1 1.04 (0.88–1.23). Discussion: Findings suggest that children who move home frequently are not adversely affected in termsof the uptake of immunisations and whether they were given within a specified timeframe. Both werehigh and may reflect proactive behaviour in the primary healthcare setting to meet Government coveragerates for immunisation

    Do Children Who Move Home and School Frequently Have Poorer Educational Outcomes in Their Early Years at School? An Anonymised Cohort Study

    Get PDF
    Frequent mobility has been linked to poorer educational attainment. We investigated the association between moving home and moving school frequently and the early childhood formal educational achievement. We carried out a cohort analysis of 121,422 children with anonymised linked records. Our exposure measures were: 1) the number of residential moves registered with a health care provider, and 2) number of school moves. Our outcome was the formal educational assessment at age 6–7. Binary regression modeling was used to examine residential moves within the three time periods: 0 – ,1 year; 1 – ,4 years and 4 – ,6 years. School moves were examined from age 4 to age 6. We adjusted for demographics, residential moves at different times, school moves and birth related variables. Children who moved home frequently were more likely not to achieve in formal assessments compared with children not moving. Adjusted odds ratios were significant for 3 or more moves within the time period 1 –,4 years and for any number of residential moves within the time period 4– ,6 years. There was a dose response relationship, with increased odds ratios with increased frequency of residential moves (2 or more moves at 4–,6 years, adjusted odds ratio 1.16 (1.03, 1.29). The most marked effect was seen with frequent school moves where 2 or more moves resulted in an adjusted odds ratio of 2.33 (1.82, 2.98). This is the first study to examine the relationship between residential and school moves in early childhood and the effect on educational attainment. Children experiencing frequent mobility may be disadvantaged and should be closely monitored. Additional educational support services should be afforded to children, particularly those who frequently change school, in order to help them achieve the expected educational standards

    Rationale and study design for a randomised controlled trial to reduce sedentary time in adults at risk of type 2 diabetes mellitus: project stand (Sedentary Time ANd diabetes)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rising prevalence of Type 2 Diabetes Mellitus (T2DM) is a major public health problem. There is an urgent need for effective lifestyle interventions to prevent the development of T2DM. Sedentary behaviour (sitting time) has recently been identified as a risk factor for diabetes, often independent of the time spent in moderate-to-vigorous physical activity. Project STAND (<it>Sedentary Time ANd Diabetes</it>) is a study which aims to reduce sedentary behaviour in younger adults at high risk of T2DM.</p> <p>Methods/Design</p> <p>A reduction in sedentary time is targeted using theory driven group structured education. The STAND programme is subject to piloting and process evaluation in line with the MRC framework for complex interventions. Participants are encouraged to self-monitor and self-regulate their behaviour. The intervention is being assessed in a randomised controlled trial with 12 month follow up. Inclusion criteria are a) aged 18-40 years with a BMI in the obese range; b) 18-40 years with a BMI in the overweight range plus an additional risk factor for T2DM. Participants are randomised to the intervention (n = 89) or control (n = 89) arm. The primary outcome is a reduction in sedentary behaviour at 12 months as measured by an accelerometer (count < 100/min). Secondary outcomes include physical activity, sitting/lying time using the ActivPAL posture monitor, fasting and 2 h oral glucose tolerance test, lipids, inflammatory biomarkers, body weight, waist circumference, blood pressure, illness perceptions, and efficacy beliefs for behaviour change.</p> <p>Conclusions</p> <p>This is the first UK trial to address sedentary behaviour change in a population of younger adults at risk of T2DM. The results will provide a platform for the development of a range of future multidisciplinary interventions in this rapidly expanding high-risk population.</p> <p>Trial registration</p> <p>Current controlled trials <a href="http://www.controlled-trials.com/ISRCTN08434554">ISRCTN08434554</a>, MRC project 91409.</p

    A three arm cluster randomised controlled trial to test the effectiveness and cost-effectiveness of the SMART work & life intervention for reducing daily sitting time in office workers : study protocol

    Get PDF
    Background:Office-based workers typically spend 70-85% of working hours, and a large proportion of leisure time, sitting. High levels of sitting have been linked to poor health. There is a need for fully powered randomised controlled trials (RCTs) with long-term follow-up to test the effectiveness of interventions to reduce sitting. This paper describes the methodology of a three-arm cluster RCT designed to determine the effectiveness and cost-effectiveness of the SMART Work &amp; Life intervention, delivered with and without a height-adjustable desk, for reducing daily sitting. Methods/Design:A three-arm cluster RCT of 33 clusters (660 council workers) will be conducted in three areas in England (Leicester; Manchester; Liverpool). Office groups (clusters) will be randomised to the SMART Work &amp; Life intervention delivered with (group 1) or without (group 2) a height-adjustable desk or a control group (group 3). SMART Work &amp; Life includes organisational (e.g., management buy-in, provision/support for standing meetings), environmental (e.g., relocating waste bins, printers), and group/individual (education, action planning, goal setting, addressing barriers, coaching, self-monitoring, social support) level behaviour change strategies, with strategies driven by workplace champions. Baseline, 3, 12 and 24 month measures will be taken. Objectively measured daily sitting time (activPAL3). objectively measured sitting, standing, stepping, prolonged sitting and moderate-to-vigorous physical activity time and number of steps at work and daily; objectively measured sleep (wrist accelerometry). Adiposity, blood pressure, fasting glucose, glycated haemoglobin, cholesterol (total, HDL, LDL) and triglycerides will be assessed from capillary blood samples. Questionnaires will examine dietary intake, fatigue, musculoskeletal issues, job performance and satisfaction, work engagement, occupational and general fatigue, stress, presenteeism, anxiety and depression and sickness absence (organisational records). Quality of life and resources used (e.g. GP visits, outpatient attendances) will also be assessed. We will conduct a full process evaluation and cost-effectiveness analysis. Discussion:The results of this RCT will 1) help to understand how effective an important simple, yet relatively expensive environmental change is for reducing sitting, 2) provide evidence on changing behaviour across all waking hours, and 3) provide evidence for policy guidelines around population and workplace health and well-being. Trial registration: ISRCTN11618007 . Registered on 21 January 2018
    corecore