77 research outputs found

    Intragenic DNA methylation prevents spurious transcription initiation.

    Get PDF
    In mammals, DNA methylation occurs mainly at CpG dinucleotides. Methylation of the promoter suppresses gene expression, but the functional role of gene-body DNA methylation in highly expressed genes has yet to be clarified. Here we show that, in mouse embryonic stem cells, Dnmt3b-dependent intragenic DNA methylation protects the gene body from spurious RNA polymerase II entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that this Dnmt3b function is dependent on its enzymatic activity and recruitment to the gene body by H3K36me3. Furthermore, the spurious transcripts can either be degraded by the RNA exosome complex or capped, polyadenylated, and delivered to the ribosome to produce aberrant proteins. Elongating RNA polymerase II therefore triggers an epigenetic crosstalk mechanism that involves SetD2, H3K36me3, Dnmt3b and DNA methylation to ensure the fidelity of gene transcription initiation, with implications for intragenic hypomethylation in cance

    SETD2 loss-of-function promotes renal cancer branched evolution through replication stress and impaired DNA repair

    Get PDF
    The research leading to these results is supported by Cancer Research UK (XYG, RAB, EG, PM, PE, SG, C Santos, AJR, NM, PAB, AS and C Swanton), Breast Cancer Research Foundation (C Swanton and NK), Medical Research Council (ID: G0902275 to MG and C Santos; ID: G0701935/2 to AJR and C Swanton), the Danish Cancer Society (AMM, J Bartkova and J Bartek), the Lundbeck Foundation (R93-A8990 to J Bartek), the Ministry of the interior of the Czech Republic (grant VG20102014001 to MM and J Bartek), the National Program of Sustainability (grant LO1304 to MM and J Bartek), the Danish Council for Independent Research (grant DFF-1331-00262 to J Bartek), NIHR RMH/ICR Biomedical Research Centre for Cancer (JL), the EC Framework 7 (PREDICT 259303 to XYG, EG, PM, MG, TJ and C Swanton; DDResponse 259892 to J Bartek and J Bartkova and RESPONSIFY ID:259303 to C Swanton), UCL Overseas Research Scholarship (SG). C Swanton is also supported by the European Research Council, Rosetrees Trust and The Prostate Cancer Foundation. This research is supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre

    Medical treatment of renal cancer: new horizons.

    Get PDF
    Renal cell carcinoma (RCC) makes up 2-3% of adult cancers. The introduction of tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin inhibitors in the mid-2000s radically changed the management of RCC. These targeted treatments superseded immunotherapy with interleukin-2 and interferon. The pendulum now appears to be shifting back towards immunotherapy, with the evidence of prolonged overall survival of patients with metastatic RCC on treatment with the anti-programmed cell death 1 ligand monoclonal antibody, nivolumab. Clinical prognostic criteria aid prediction of relapse risk for resected localised disease. Unfortunately, for patients at high risk of relapse, no adjuvant treatment has yet shown benefit, although further trials are yet to report. Clinical prognostic models also have a role in the management of advanced disease; now there is a pressing need for predictive biomarkers to direct therapy. Treatment selection for metastatic disease is currently based on histology, prognostic group and patient preference based on side effect profile. In this article, we review the current medical and surgical management of localised, oligometastatic and advanced RCC, including side effect management and the evidence base for management of poor-risk and non-clear cell disease. We discuss recent results from clinical trials and how these are likely to shape future practice and a renaissance of immunotherapy for renal cell cancer

    Driver mutations of cancer epigenomes

    Get PDF

    SWOT Analysis

    No full text

    Poultry production in Ethiopia

    No full text
    • …
    corecore