7,573 research outputs found

    Discrete dislocation and crystal plasticity analyses of load shedding in polycrystalline titanium alloys

    Get PDF
    The focus of this paper is the mechanistic basis of the load shedding phenomenon that occurs under the dwell fatigue loading scenario. A systematic study was carried out using a discrete dislocation plasticity (DDP) model to investigate the effect of crystallographic orientations, localised dislocation behaviour and grain combinations on the phenomenon. Rate sensitivity in the model arises from a thermal activation process at low strain rates, which is accounted for by associating a stress- and temperature-dependent release time with obstacles; the activation energy was determined by calibrating an equivalent crystal plasticity model to experimental data. First, the application of Stroh's dislocation pile-up model of crack nucleation to facet fracture was quantitatively assessed using the DDP model. Then a polycrystalline model with grains generated using a controlled Poisson Voronoi tessellation was used to investigate the soft-hard-soft rogue grain combination commonly associated with load shedding. Dislocation density and peak stress at the soft/hard grain boundary increased significantly during the stress dwell period, effects that were enhanced by dislocations escaping from pile-ups at obstacles. The residual stress after dwell fatigue loading was also found to be much higher compared to standard fatigue loading. Taylor (uniform strain) and Sachs (uniform stress) type assumptions in a soft-hard grain combination have been assessed with a simple bicrystal DDP model. Basal slip nucleation in the hard grain was found to be initiated by high stresses generated by strong pile ups in the soft grain, and both basal and pyramidal slip nucleation was observed in the hard grain when the grain boundary orientation aligned with that of an active slip system in the soft grain. The findings of this study give new insight into the mechanisms of load shedding and faceting associated with cold dwell fatigue in Ti alloys used in aircraft engines

    Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue

    Get PDF
    This paper addresses the role of grain boundary slip transfer and thermally-activated discrete dislocation plasticity in the redistribution of grain boundary stresses during cold dwell fatigue in titanium alloys. Atomistic simulations have been utilised to calculate the grain boundary energies for titanium with respect to the misorientation angles. The grain boundary energies are utilised within a thermally-activated discrete dislocation plasticity model incorporating slip transfer controlled by energetic and grain boundary geometrical criteria. The model predicts the grain size effect on the flow strength in Ti alloys. Cold dwell fatigue behaviour in Ti-6242 alloy is investigated and it is shown that significant stress redistribution from soft to hard grains occurs during the stress dwell, which is observed both for grain boundaries for which slip transfer is permitted and inhibited. However, the grain boundary slip penetration is shown to lead to significantly higher hard-grain basal stresses near the grain boundary after dwell, thus exacerbating the load shedding stress compared to an impenetrable grain boundary. The key property controlling the dwell fatigue response is argued to remain the time constant associated with the thermal activation process for dislocation escape, but the slip penetrability is also important and exacerbates the load shedding. The inclusion of a macrozone does not significantly change the conclusions but does potentially lead to the possibility of a larger initial facet

    Efficient generic calibration method for general cameras with single centre of projection

    Get PDF
    Generic camera calibration is a non-parametric calibration technique that is applicable to any type of vision sensor. However, the standard generic calibration method was developed with the goal of generality and it is therefore sub-optimal for the common case of cameras with a single centre of projection (e.g. pinhole, fisheye, hyperboloidal catadioptric). This paper proposes novel improvements to the standard generic calibration method for central cameras that reduce its complexity, and improve its accuracy and robustness. Improvements are achieved by taking advantage of the geometric constraints resulting from a single centre of projection. Input data for the algorithm is acquired using active grids, the performance of which is characterised. A new linear estimation stage to the generic algorithm is proposed incorporating classical pinhole calibration techniques, and it is shown to be significantly more accurate than the linear estimation stage of the standard method. A linear method for pose estimation is also proposed and evaluated against the existing polynomial method. Distortion correction and motion reconstruction experiments are conducted with real data for a hyperboloidal catadioptric sensor for both the standard and proposed methods. Results show the accuracy and robustness of the proposed method to be superior to those of the standard method

    Towards dynamic camera calibration for constrained flexible mirror imaging

    Get PDF
    Flexible mirror imaging systems consisting of a perspective camera viewing a scene reflected in a flexible mirror can provide direct control over image field-of-view and resolution. However, calibration of such systems is difficult due to the vast range of possible mirror shapes and the flexible nature of the system. This paper proposes the fundamentals of a dynamic calibration approach for flexible mirror imaging systems by examining the constrained case of single dimensional flexing. The calibration process consists of an initial primary calibration stage followed by in-service dynamic calibration. Dynamic calibration uses a linear approximation to initialise a non-linear minimisation step, the result of which is the estimate of the mirror surface shape. The method is easier to implement than existing calibration methods for flexible mirror imagers, requiring only two images of a calibration grid for each dynamic calibration update. Experimental results with both simulated and real data are presented that demonstrate the capabilities of the proposed approach

    Deformation compatibility in a single crystalline Ni superalloy

    Get PDF
    Deformation in materials is often complex and requires rigorous understanding to predict engineering component lifetime. Experimental understanding of deformation requires utilization of advanced characterization techniques, such as high spatial resolution digital image correlation (HR-DIC) and high angular resolution electron backscatter diffraction (HR-EBSD), combined with clear interpretation of their results to understand how a material has deformed. In this study, we use HR-DIC and HR-EBSD to explore the mechanical behaviour of a single-crystal nickel alloy and to highlight opportunities to understand the complete deformations state in materials. Coupling of HR-DIC and HR-EBSD enables us to precisely focus on the extent which we can access the deformation gradient, F, in its entirety and uncouple contributions from elastic deformation gradients, slip and rigid body rotations. Our results show a clear demonstration of the capabilities of these techniques, found within our experimental toolbox, to underpin fundamental mechanistic studies of deformation in polycrystalline materials and the role of microstructure

    The Synthesis and Characterization of New, Robust Titanium (IV) Scorpionate Complexes

    Get PDF
    Titanium complexes possessing sterically encumbered ligands have allowed for the preparation of reactive moieties (imido, alkylidene and alkylidyne species) relevant to reactions such as olefin polymerization and alkyne hydroamination. For this reason, we have targeted robust scorpionate ancillary ligands to support reactive titanium centers. Thus, a series of titanium complexes were synthesized using an achiral oxazoline-based scorpionate ligand, tris(4,4-dimethyl-2-oxazolinyl)phenyl borate [To^M^]^-^ as well as the related chiral ligand, tris(4-isopropyl-2-oxazolinyl)phenyl borate [To^P^]^-^. The complex [Ti(κ^3^- To^M^)Cl~3~] was prepared in moderate yield (43%) by the rapid (<1 min at room temperature) reaction of Li[To^M^] and TiCl~4~ in methylene chloride; this new compound was characterized by ^1^H NMR spectroscopy as the expected C~3v~-symmetric species. One route to Ti (IV) alkyls involves salt metathesis; accordingly, syntheses of [To^M^]Ti alkyl complexes by interaction of [Ti(κ^3^-To^M^)Cl~3~] and one or three equivalents of alkylating agents, such as benzyl potassium (KCH~2~C~6~H~5~), trimethylsilylmethyl
lithium (LiCH~2~Si(CH~3~) ~3~), or neopentyl lithium (LiCH~2~C(CH~3~)~3~) are currently under investigation. The complexes [Ti(=NBut) (κ~3~-To^M^)(Cl)(Bu^t^py)] (Bu^t^py=4 tert-butylpyridine) and [Ti(=NBu^t^) (κ~3~-To^P^)(Cl)(Bu^t^py)] were synthesized by reaction of the known Ti imido [Ti(=NBu^t^)(Cl)~2~(Bu^t^py)~2~] with Li[To^M^] or Li[To^P^], respectively, by stirring overnight in methylene chloride at ambient temperature. The complexes were identified using ^1^H NMR spectroscopy, ^1^H-^13^C HMQC and ^1^H-^15^N HMBC correlation experiments

    Brief history of the coal mining industry in Queensland

    Get PDF

    A Gauge-Gravity Relation in the One-loop Effective Action

    Full text link
    We identify an unusual new gauge-gravity relation: the one-loop effective action for a massive spinor in 2n dimensional AdS space is expressed in terms of precisely the same function [a certain multiple gamma function] as the one-loop effective action for a massive charged scalar in 4n dimensions in a maximally symmetric background electromagnetic field [one for which the eigenvalues of F_{\mu\nu} are maximally degenerate, corresponding in 4 dimensions to a self-dual field, equivalently to a field of definite helicity], subject to the identification F^2 \Lambda, where \Lambda is the gravitational curvature. Since these effective actions generate the low energy limit of all one-loop multi-leg graviton or gauge amplitudes, this implies a nontrivial gauge-gravity relation at the non-perturbative level and at the amplitude level.Comment: 6 page

    Permanent counter-revolution: The role of the Trotzkyites in the Minneapolis strikes

    Get PDF
    https://stars.library.ucf.edu/prism/1388/thumbnail.jp

    Gastonia, citadel of the class struggle in the new South

    Get PDF
    https://stars.library.ucf.edu/prism/1511/thumbnail.jp
    corecore