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Deformation in materials is often complex and
requires  rigorous understanding to predict
engineering component lifetime. Experimental
understanding of deformation requires utilization
of advanced characterization techniques, such as
high spatial resolution digital image correlation
(HR-DIC) and high angular resolution electron
backscatter diffraction (HR-EBSD), combined with
clear interpretation of their results to understand
how a material has deformed. In this study, we use
HR-DIC and HR-EBSD to explore the mechanical
behaviour of a single-crystal nickel alloy and to
highlight opportunities to understand the complete
deformations state in materials. Coupling of HR-DIC
and HR-EBSD enables us to precisely focus on the
extent which we can access the deformation gradient,
F, in its entirety and uncouple contributions from
elastic deformation gradients, slip and rigid body
rotations. Our results show a clear demonstration
of the capabilities of these techniques, found within
our experimental toolbox, to underpin fundamental
mechanistic studies of deformation in polycrystalline
materials and the role of microstructure.

1. Introduction

Characterizing and understanding the deformation
behaviour of crystalline materials at microstructure scale
are of great importance to further improve materials’
strength and integrity performance, e.g. fracture and
fatigue crack nucleation life [1-3]. These are required
to design higher performance components suitable for
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applications in fields such as aerospace engineering and energy, structural performance and
ultimately tackling societal challenges such as climate change.

Exciting progress has been made during the past 20 years in developing new characterization
tools that enable us to probe microstructures with ever-more fidelity. These techniques enable
us to understand the behaviour of model and industrial materials at a range of length and
timescales. There are a number of examples, such as the emergence of the electron backscatter
diffraction (EBSD) technique in 1990s [4], local residual stress and stored geometrically necessary
dislocation density measurement using electron diffraction patterns, including high (angular)-
resolution EBSD [5-7] and X-ray synchrotron techniques [8]; and local accumulated plastic slip
measurement by high (spatial)-resolution digital image correlation (HR-DIC) [9-13].

These experimental techniques have arisen with a complementary array of numerical
and computation tools enabling new theories to be realized in component design and
engineering of real structures. This includes approaches such as finite-element crystal plasticity
(CPFE) modelling [14,15], crystal plasticity fast Fourier transform (CPFFT) [16,17], molecular
dynamics [18,19], and discrete dislocation dynamics [20-22]. These tools enable the discrete
nature of materials to be captured at different time and length scales and, when used
appropriately, enable materials scientists and engineers to test out theories often with direct
comparison with experiments; and explore deformation in conditions that are inaccessible
experimentally. Fundamentally, this assists in designing components based upon credible design
rules and engineering know-how.

To date, this paradigm has delivered impressive gains, but as we extend our experimental and
computational arsenal of techniques, there are further opportunities to refine our understanding.
From an experimental perspective, new techniques and the marrying of complementary tools
drives mechanistic understanding and enables improved validation/calibration of computation
tools. In this paper, we highlight this opportunity by using HR-EBSD and HR-DIC on the same
sample to test fundamental theories of continuum mechanics and deformation for the very
first time.

According to Lee’s continuum mechanics theory, F = FCFP [23], an object’s deformation can be
described by total deformation gradient (F) which consists of total strain (E*°®l) and total rotation
(@"°'l). The total deformation gradient (F) can be achieved through a plastic deformation part
(FP) followed by an elastic deformation part (F®). Similarly, F® and FP are composed of elastic
strain (E€2t<), Jattice rotation (w®!2ti€), plastic strain (EP!2t€) and continuum rotation (@P'2sti€). In
most crystalline systems, plastic deformation is primarily caused by dislocation slip, and affected
by dislocation interactions and storage. This means that dislocation-based physical mechanistic
understanding can be used to update the state of these field terms. For instance, to ensure material
compatibility is satisfied, curl(F) should be equal to zero. If follows that the presence of plastic
strain gradients [24-27] may be explained by the presence of geometrically necessary dislocations
(GNDs) that describe the closure failure of loops around either the curl of elastic deformation
field or that of the plastic deformation field (for more in-depth discussion of this topic, see the
pioneering work by Nye & Kroner [28,29]).

Briefly, HR-EBSD measures a change in the atomic lattice through careful analysis of electron
diffraction patterns captured within the scanning electron microscope from a single sample (and
therefore macroscopic strain state). Maps of diffraction patterns are captured using conventional
EBSD software and analysed offline, using image correlation techniques, for pairs of diffraction
patterns. A change in deviatoric strain and lattice rotation, between reference point and test point,
can be measured with very high precision (approx. 1 x 107# in strain and approx. 1 x 10~*rads
in lattice rotation [5]). Maps of HR-EBSD results can be used to generate field plots of the elastic
deformation gradients [5]. These maps form one arm of our testing strategy for Lee’s theory of
continuum mechanics.

Similarly, HR-DIC measures change in the surface displacements through tracking of surface
features, either naturally occurring within the microstructure or added as markers. Sophisticated
image processing algorithms, very similar to those used in HR-EBSD, are used to compare
micrographs captured at each strain state to measure the relative displacement field between
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each step (for a detailed recent review, see [30]). These displacement fields, often measured only
in two dimensions, can be used to calculate the total deformation gradient (F) between an initial,
i.e. reference, state and each test state. The precision of HR-DIC is difficult to generalize as it
is a trade-off tightly correlated with the region of interest/window size used for the tracking
algorithm (often image correlation). Generally, a high displacement resolution requires larger
regions of interest (ROIs), which in turn reduces the spatial resolution of the resultant strain field.
In many circumstances, the nature of deformation at the microstructural length scale involves a
compromise where the strain fields measured are largely insensitive to very small elastic strains
found in metals [9,31].

Gioacchino et al. [11] conducted some pioneering work on developing the HR-DIC technique
by depositing nano-size gold particles to achieve sub-micro spatial resolution and several other
groups have also made significant contributions to the HR-DIC technique and address various
plasticity problems, namely strain localization near Ni twin boundaries, strain accumulation in
fatigue crack growth and damage resistance criteria in dual phase steels (e.g. [12,32-34]).

To recap, from the continuum mechanics perspective, HR-DIC measures the total deformation
gradient between deformation steps, including total strain and total rotation; while HR-EBSD
measures the elastic deformation gradient, including elastic strain and lattice rotation relative to
a reference point within each grain for each particular deformation step.

The aim of this current work is to assess whether these two complementary techniques
inform us of the complete deformation state of a crystal and aid our understanding of the
validity of continuum mechanics, or more precisely kinematics, at the microstructural length
scale. We focus on understanding deformation in a single crystal of an Ni superalloy at room
temperature, which deforms through dislocation mediated plasticity, and enables us to explain
relative contributions to the total deformation gradient and elastic deformation gradient terms
which can be accessed with HR-DIC and HR-EBSD, respectively. This study complements a
wider campaign of understanding deformation, plasticity and fatigue in Ni superalloys with high
fidelity modelling and experimental tools (e.g. [35-37]) in order to predict fatigue crack initiation
and improve lifeing strategies.

2. Methodology

(a) Sample preparations and mechanical test

A single-crystal Ni superalloy sample MAR002 was deformed using a three-point bending test.
The testing rig and studied areas are shown in figure 1a. The crystal was oriented such that a single
slip system was active in the region studied (the maximum tensile strain section. This region was
studied on one face with HR-EBSD and on the second (i.e. reverse face) with HR-DIC. These
loading tests were performed using an interrupted loading protocol, where at each interruption
the sample was removed from the bending rig and loaded into the scanning electron microscope
(SEM) for imaging.

The sample was cut from a single crystal into a 12 x 3 x 3mm? testing bar and polished
to a high-quality metallographic finish using gradually decreasing diamond particle size in
suspension, from 10 to 3 to 1um, and finished by 40min colloidal silica chemo-mechanical
polishing. As revealed in figure 1c, an EBSD map with 20 um step size was captured to check
polishing quality and determine crystallographic orientation of the red framed image. No stretch
or deformation were found in the EBSD map, and it was also confirmed that this sample was
indeed single crystalline Ni with a crystallographic orientation close to [1 1 1] orientation pointing
out of the free surface of sample. Furthermore, it is not unreasonable to assume that this specimen
is subject to a plane stress condition near the free surface.

The opposite face was prepared for HR-DIC measurements. High fidelity DIC measurement
requires good contrast and very fine patterning [38]. To achieve this, we developed a promising
approach by coating the sample surface with 250nm polishing suspension containing silica
particles. The suspension was firstly diluted with distilled water at a ratio of 1:8. The solution
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Figure 1. Experimental set-up. In-house made three-point bending rig (a). The two lower supporting silver steel rollers and
an upper loader are indicated. (b), testing a single crystalline Ni superalloy sample with marked dimensions (12 x 3 x 3 mm)
is shown as an insert in which the face and region for HR-EBSD measurement and opposite face for HR-DIC measurement are
indicated as red and yellow rectangles, respectively. (c) An enlarged area on the EBSD face (red framed image) shows an IPF
generated with respect to the horizontal direction. Unicell clearly illustrate crystallographic orientation within sample frame.
The four black markers are micro-indentation markers to mark ROI (middle bottom region of the bar specimen). (d) An enlarged
area on the DIC face opposing to the EBSD face (yellow framed image) shows 3072 pixel x 2304 pixel SEM image of relatively
uniform nanoparticle-coated surface. The small region was enlarged to highlight the morphology of nanoparticles (white dots).
(Online version in colour.)

was then put into an ultrasonic bath for 20 min to ensure silica particles were evenly distributed.
Prepared silica solution was dropped on the ROI of the polished DIC face of the Ni sample, which
was then put on a hot plate at a temperature of 150°C for 5min to remove any additional liquid
moisture. This reinforced the bonding between silica particles and the free surface of the sample
and provided good stability in a vacuumed SEM chamber even under moderately deformed state.

This sample was inserted into the testing jig and clamped between four 3mm diameter high
strength steel rollers with a horizontal span length of 10 mm each two rollers (this geometry is
optimized for push-push fatigue testing). Load was applied by an upper loader, with a diameter
of 3mm, which is connected to a conventional mechanical testing frame. The stroke and load
were measured by the mechanical testing frame. The mechanical testing was performed in
displacement control with target loads increasing by 100N for each interruption, starting close
to the macroscopically observed yield point. The mechanical load frame results are shown in
figure 2.

After each loading increment, the sample was removed from the testing rig and examined
within a Zeiss Auriga-40 SEM. Alignment of the imaged area was performed. Secondary electron
images were captured at a relatively high magnification revealing an area of approximately 205 x
154 pm, with a pixel size of 70nm, for DIC analysis. Images were captured at a short working
distance (5 mm from the pole piece) at 20 kV and in high current mode (approx. 18 nA). The signal-
to-noise ratio was improved using the line scanning average mode (two lines averaged). This
results in a typical frame capture time of approximately 1.5 min per image. The imaging mode,
SEM distortions and DIC analysis parameters were checked using a rigid body translation test.
A root mean square (RMS) displacement error of approximately 43nm was found [37]. These
imaging conditions and relatively uniform and high-contrast patterning ensure high sensitivity
of DIC measurement as shown in figure 1d.

The sample was flipped over and a Bruker QUANTAX EBSD system, with eFlash HR camera,
was used to scan an area of 80 x 110 um EBSD map for a similar region of the bending beam.
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Figure 2. Force and displacement curves for each interrupted test, in which force was measured by 10 KN load cell and the
displacement was measured from the cross-head of testing machine. The applied loading rate is 10N s~". (Online version in
colour.)

EBSD was performed using similar imaging conditions to those for the DIC imaging (20kV,
high current). Patterns were captured with a step size of 0.25um step size, 2 x 2 binning
(800 pixel x 574 pixel EBSPs) and 12 bit depth and saved for offline processing. The EBSD
pattern frame rate was approximately 0.25s. Each EBSD map took approximately 10h to scan
and approximately 135 Gb disc space for saving all EBSD patterns within each map.

(b) In-house developed high-resolution digital image correlation

The digital image correlation (DIC) technique has been under development for more than two
decades [9,30] and is a mature technique. The basic concept is to track features moving across the
surface of two similar images using image processing techniques, such as cross-correlation, and
determine the relative shifts of these features. One significant advantage of DIC is that the source
of the two images is not fixed, provided that there is sufficient contrast, and therefore there is no
length limit. This transfers the problem of high-resolution measurements to a matter of decorating
and imaging the surface of a sample with sufficient resolution for high precision shift tracking.

In this study, we use SEM-based images which provide a high spatial resolution for sample
shift determination. In our laboratory, we independently developed a DIC patterning approach
using 250 nm silica particles. The obtained SEM image size is 1225 x 919 pixels which have a pixel
size of 67 nm. We used the size of 100 x 100 pixels ROI with 90% overlapping in our DIC analysis,
such that the spatial resolution of DIC measurement is estimated at approximately 0.7 um. The
typical measurement sensitivity using cross-correlation-based method is approximately 0.1-0.5
pixel and hence our strain resolution is lower than approximately 0.2% [13].

We have chosen to interrogate these images using an in-house developed code to ensure
that our manipulation of shifts to strains is described precisely, flexibly and with maximum
transparency for our calculations. This script was written within Matlab. Cross correlation was
performed using two steps. The first step corrected frame average rigid body translation and far
field/whole frame rotation. The second stage employed a regular grid of ROIs with size of 100
pixels and 90% overlapping for local strain measurement.

The spatial intensity information within each ROI was normalized, windowed and then
transformed to the Fourier domain. Band pass filtering was performed in the Fourier domain
and we applied low pass (2,1) and high pass (24,12) filters to remove noise. Cross-correlation
was carried out in the Fourier domain between the ROI from the first image and that from each
test image. By determining the up-sampled displacement of correlation peaks, shifts along X and
Y in-plane axes were measured. As illustrated in figure 3, the deformed position (x,y) of any ROI
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Figure 3. lllustrates the objects configuration changed due to deformation. Blue rectangle illustrates undeformed
configuration, and red one corresponds to deformed configuration. (Online version in colour.)

can be calculated by adding the original position (X, Y) and determined displacements u and v
along the x- and y-axes, respectively.

By quadratic fitting of three neighbouring points along x- and y-axes, four of nine components
of the total deformation gradient tensor F can be directly determined from DIC measurement as
shown in equation (2.1). The missing five terms (shown in red) are related to the out-of-plane
shifts or gradients which are inaccessible in our two-dimensional in-plane measurement.
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From continuum mechanics, the total (Green) strain and rotation can be derived from F based
on a polar decomposition. Here Exy, Exy, Eyx and E,y given with respect to the global reference
coordinate directions are determined directly from the following equation:

E= %(PTP -1, (2.2)

where E is the Green strain tensor, F! is the transpose of F and I is the identify matrix.
The effective strain is defined as

2 202 g2 N
Eeff = <§E:E> = |:§(E11 +E5 + 2E12)] . (2.3)
The strain sensitivity of HR-DIC is limited to approximately 0.2%, and therefore it can be
reasonable and useful to consider that strains are large enough such that elastic strains are
negligible compared to the plastic deformation. The three-dimensional total rotation tensor can
be calculated from polar decomposition by writing the deformation gradient in terms of stretch
U and rotation R as shown below

F=RU, (2.4)

where R is the rotation matrix and U the symmetric matrix describing the stretch.

By rearranging equation (2.4), the total rotation R can be calculated from equation (2.5).
However, the stretch matrix U is the square root of the diagonal matrix of F'F as shown in
equation (2.6), which can be obtained by transforming coordinate system. This can be achieved
by determining the eigenvalues U'? and eigenvectors Q of F! - F (equation (2.7)).

R=FU!, (2.5)
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F'F=U'U as R'R=I (2.6)
and u=Q'uQ 2.7)

where Q is the eigenvector matrix of FTF and U’ is square root of eigenvalues of FTF.

(c) High-resolution electron backscattered diffraction

The high-resolution electron backscatter diffraction (HR-EBSD) technique enables calculation
of the full elastic strain and lattice rotation tensors through careful analysis of two or more
diffraction patterns captured within the SEM. The cross-correlation-based HR-EBSD technique
was first developed by Wilkinson ef al. in 2006 [5] and results in improved angular resolution
of conventional Hough-based EBSD by a factor of 100 (approx. 4.3 x 1075 rad compared with
4.3 x 1073 rad [5]). Such angular resolution enabled analysis of intragranular elastic strain (i.e.
stress through use of anisotropic elastic constants and Hooke’s law) and higher sensitivity of
geometrically necessary dislocation (GND) density measurement.

This technique continues to evolve to tackle more problems with increasing rigour. These
significant improvements include robust fitting to improve its upper limit on misorientation
measurement in cross-correlation [39]; as well as iterative cross-correlation to remove large
rotation and rigid body translation in the first pass and reduce rotation-induced error in elastic
strain measurement [40]. Further studies assessing the limits of HR-EBSD and measurements
continue and include: how HR-EBSD sensitivity was affected by a range of analytical parameters
were also systematically studied such as EBSD CCD detector binning size, exposure time
and scanning step size [41-43]; furthermore, analysis of microstructural features such as grain
boundaries necessitated an assessment of the effect of EBSD pattern overlap across grain
boundaries and near microstructural features [44]. These improvements have been performed
as the cross-correlation-based HR-EBSD approach has been adopted and developed by several
other groups [45,46].

We only briefly describe the HR-EBSD methodology in terms of continuum mechanics and
detailed descriptions of HR-EBSD methodology can be found elsewhere [6]. The basic concept of
HR-EBSD is very similar to HR-DIC, in that effectively we measure the shifts of ROIs within
a test image with respect to reference images within each grain. The images used here are
the diffraction patterns consisting of direct projections of lattice planes and therefore we track
changes within the atomic structure directly, rather than surface displacements. This means that
HR-EBSD directly measures elastic deformation between points within a map. Two passes of
cross-correlation approach as developed by Britton et al. [40] were conducted here from which
the rigid pattern translation (due to pattern centre shift) and large rotations were estimated in the
first pass of cross-correlation and removed. The corrected EBSD patterns were used in the second
pass to re-calculate elastic strain such that elastic strains in the presence of larger lattice rotations
can be calculated accurately.

As shown in figure 4, a reference lattice (blue square) is deformed (red square) arbitrarily. The
initial vector r is distorted to # with a displacement vector Q which is manifested as projected
shift in the EBSD pattern represented by gq. Therefore, the vector relationship between g, Q and Ar
can be expressed as

q=Q— ir, (2.8)

where A is an unknown scalar.
Since Q can be determined by

Q=7 —r (2.9)
and #’ can be transformed from r by elastic deformation gradient tensor F€, thus

¥ = (F° — Iy, (2.10)
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Figure 4. Schematically shows vector r in undeformed two-dimensional lattice structure (blue square) and vector r" in
deformed (green square). Displacement due to deformation can be expressed as Q and the resulted shift projected on EBSD
detector is represented by g. (Online version in colour.)

where the term F¢ — I is defined by displacement u = (1, v, w) at position x = (X, Y, Z) and I is the
identity matrix

du du o du
dx dy dz
R T e
dX dy dz
do do do
dX dy dz
Substituting equations (2.9) and (2.10) into equation (2.8), gives
g={F* —I— (L +1)Dr. 2.12)

where % is an unknown scalar which cannot be obtained from shift measurement. However, it can
be eliminated by substituting one of three simultaneous equations from any of the other two to
yield the following two simultaneous equations:

v
MN——-—+rnm

dX

dv dw dv  rrp dw 7% dw
[H_ﬁ} no -2 82Uy, (2.13)

and
2

1’1[%—%]4—?2%—{—@%—@@—@@:%. (2.14)
In principle, four measurements of zone axes shifts g at widely spaced directions r within
EBSD patterns are sufficient to directly calculate dv/dX, dw/dX, du/dY, dw/dY, du/dZ, dv/dZ,
[du/dX — dw/dZ], [dv/dY — dw/dZ]. The terms du/dX, dv/dY, dw/dZ cannot be obtained
directly because HR-EBSD does not measure hydrostatic dilation or contraction, as this does not
change interplanar angles within the crystal lattice. However, as any EBSD measurement is very
close to a free surface (20-50 nm) [45,47,48], it is not unreasonable to assume that the normal
stress o33 is close to zero at the surface [49]. This assumption allows the three unknown strain
terms to be determined using anisotropic Hooke’s law and knowledge of the single-crystal elastic
constants. We choose to apply only a o33 traction-free boundary condition and assess whether the
out-of-plane shear stress terms are close to zero to ensure that our measurements are reasonable.

Similar to the HR-DIC approach, the measured deformation gradient tensor F¢ can be further
split into elastic strain E® and lattice rotation w® according to polar decomposition, where U*® is
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the elastic stretch matrix and can be determined from the eigenvalues and eigenvector of FeT . pe
according to equations (2.6) and (2.7)

Ee=L(FTFe — 1) (2.15)

and
w® =Fuc'. (2.16)

It should be noted that as the deformation state of the selected reference point within a given
grain is unknown, the HR-EBSD technique measures the relative elastic strain and rotation with
respect to each chosen reference point. Furthermore, despite a sequential deformation series of
the same crystal, it is not possible to measure with respect to an initially undeformed sample as
the HR-EBSD technique measures shifts within the pattern of approximately 0.05 pixels, i.e. 2 um
in real space, which requires knowledge of the relative detector and sample precision to the same
precision which is not a trivial exercise.

(d) Crystal continuum approach for geometrically necessary dislocation density evaluation

Geometrically necessary dislocations are defined as an aggregate of dislocations which attributes
to lattice geometrical shape change, e.g. a low angle grain boundary [28]. On the other hand,
dislocations with opposite line directions resulting in no lattice geometrical change are described
as statistically stored dislocations (SSDs) e.g. dipoles and multipoles. Strictly speaking, if circuit
size is small enough to enclose a single dislocation, all such dislocations are GNDs. However,
classifying dislocations as GNDs and SSDs has important advantages in continuum crystal
plasticity modelling. Ashby in 1974 noticed embedded particles in matrix led to large plastic strain
gradients and proposed that plastic strain gradient were due to the presence of GNDs [24].

In traditional continuum crystal plasticity modelling, length effects are not taken into account.
This was changed when Fleck carried out torsion and bend experimental tests on various
sizes of copper samples (12-170 um) and found that smaller samples exhibited significantly
greater hardening effect [25]. This resulted in several groups such as Fleck et al. [25,50] and
Gao et al. [51,52] proposing that GNDs provided the explanation for plastic strain gradients
and plastic strain-hardening effects. Hence, length-scale effects have now been introduced and
successfully implemented in modern crystal plasticity finite-element modelling [15,27,53-55].
This has motivated experimental studies to measure GND density with high spatial resolution.
As we cannot directly measure dislocation content across large microstructural areas [as the
transmission electron microscope (TEM) requires small and thin foils to be prepared], the link
between experimental measurements and GND content is necessarily indirect. We follow the
routes described by Nye, Kroner and others [56,57] to briefly describe length-scale effect in crystal
plasticity and outline the mathematics here for completeness gradient

In order to satisfy the compatibility condition, an integral of total deformation (F) around any
closed loop I must equate to zero. As F = FCFP, we have

fﬁ Fdx= 5{5 FeFP dx =0. 2.17)
r r

This equation illustrates how HR-EBSD and HR-DIC measure different parts of deformation. HR-
DIC measures F, whereas HR-EBSD measures F¢. This demarcation will be discussed with respect
to experiments shortly.

In order to access GND content, HR-EBSD measurements of F¢ can be used to obtain an
integral loop to give a closure failure caused by the presence of GNDs:

j£ Fedx=— f]g FP dx #0. (2.18)
r r

Considering an arbitrary surface, S, with normal r, Stokes” theorem is employed to give the
closure failure of a surface integral caused by the net GND density p5 whose Burger’s direction
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bg is parallel to r.

jE Fedx :H curl(F)rdS =H (bg ® pg)rds.
r s s

(2.19)

As dislocation density pg consists of dislocations generated from all possible slip systems N;
(i =1-12 for an Ni fcc crystal system), to simplify equation (2.19), we have

N;i

Z bé; ® piG = curl(F°).

i=1

(2.20)

With respect to the right-hand side of the above equation, we can express curl(F¢) explicitly as

8F§x _ 8F]e/’( 8F§x _ ang aF;’( _ ang
oy 0z 0z x ox ay
B By B 9FS, ore, ore, 9Fe, 9re, ore
C [0 -
curl(F®) =curl [ F,  Fy, Fj, |= sz - Y e A W (2.21)

y 0z 0z ax ox oy

F By F . e
3F§z _ aF}/Z apiz o ang BF}/Z _ aFiZ
ay 0z 0z 0x 0x oy

Although HR-EBSD can obtain all nine components in F¢, the derivative components in
equation (2.21) along surface normal z are inaccessible (marked as red). Thus, only three of
nine components of curl(F®) can be completely and explicitly determined using the HR-EBSD
technique. It is worth noting that other methods assuming negligible contribution from elastic
strain enable six derivatives of the rotation field to be obtained and therefore provide six
constraints [56,57].

In FCC materials, there are 12 possible slip systems, containing 12 edge dislocation types
and six screw dislocation types, and only three of nine curl(F) terms can be completely and
explicitly determined using HR-EBSD (noting that six of nine can be determined if the elastic
strain contributions are ignored). This renders extracting dislocation density from individual slip
systems difficult as there is an underdetermined problem to solve, which means that additional
constraints must be imposed to obtain solutions [48]. Either minimization of the residual least-
squares solution ‘L2’, or a L1 solution that minimizes dislocation line energy or dislocation
line length is used to obtain a non-unique GND density [56]. Yet, in the experimental study
to be described shortly, only a single active slip system exists; there are three equations that
describe components of curl(F) and one unknown (the dislocation density). Thus, this becomes
an overdetermined problem and we can unambiguously determine GND density for the active
slip system.

For our single crystalline Ni sample, crystallographic orientation was determined by the
Bruker EBSD system and described by three Euler angles (¢1,0, ¥) as (228°, 37°, 156°). Thus its
orientation matrix g was calculated as follows:

i cos(y) sin(y) O 1 0 0 cos(¢q1) sin(¢p) O
g=|—sin(y) cos(¥) O[O0 cos(®) sin(®) | | —sin(¢1) cos(¢1) O
0 0 1[{]0 —sin(@) cos(0) 0 0 1
[ 077 055 —031]
=|-034 077 0.53 (2.22)
053 —-031 0.79

As DIC and EBSD maps were acquired near the central region towards the bottom tensile region
of the experimental sample, over areas whose sizes are relatively small when compared with the
sample size, it is not unreasonable to assume that the state of local deformation is largely uniform
and uniaxial tension in nature along the horizontal direction [1 0 0] (x-axis). By applying Schmid’s
law, the primary dislocation slip system with minimum Schmid factor (m) was determined as
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Figure 5. lllustration of predicted primary slip system including slip plane (yellow plane) and slip direction (blue line) in a
sample frame based on Schmid factor analysis. Black unit cell shows sample’s crystallographic orientation in a sample frame
(DICface), and the red line represents predicted slip line on the sample free surface. (Online version in colour.)

follows:

m = cos(f)cos(r), (2.23)

where m is the Schmid factor for all 12 possible slip systems in the FCC Ni sample, # the angle
between the transformed slip plane g - {11 1} and applied loading direction [1 0 0] and A the angle
between the transformed slip direction g - (110) and the loading axis.

With the maximum value of Schmid factor m, the slip system with slip plane n (-1 —1 1) and
slip direction s [-1 1 0] on the crystal frame was determined as the primary slip system. The slip
line on the sample free surface of the DIC face was also calculated by obtaining the intersection
line between the slip plane and free surface as illustrated in figure 5.

As this experiment was designed for single slip in a single crystal and the primary slip plane
n and primary slip direction s were determined, these can then be substituted into the left-hand
side of equation (2.20) to give

Ni ) be 51 I
Zb&@p&ﬂé@pé:E s2]l®nc ||, (2.24)
i=1 s3 13

where blc is Burgers vector of the primary slip system and may be expressed as the product of half
the nickel atomic spacing (bg) and slip direction vector s and divided by the magnitude of slip
direction vector s in order to give a unit vector; pg is similarly the product of the geometrically
necessary dislocation density magnitude (pg) and the dislocation line vector I which is obtained
from the cross product of vectors of slip direction (s) and slip plane ().

Substituting equations (2.21) and (2.23) into equation (2.24), we have

OFg, OFy  oFy,  9FS, O 9Fg

XX
oy 0z 0z ox x ay
si-l1 s1-lp s1-l
bgpg |T1F 102 o1l OFy, OF;, OF;, 0F, 0Fy, OF,

— Y|, (2

sp-l1 sp-lh sy-l3|= — - = =
2o sz mars oy 0z 0z ox 0x oy

S
sl s3-lh s3-lp s3-l3

ang o 8F§Z 3F§Z _ 3F§z 8F§Z _ aF?cz

oy 0z 0z ax ax oy
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SEM image 0.05

—-0.05

Figure 6. HR-DIC measured total strain and rotation components at the load of 2300 N: £y (a), £,y (b) £y (c) and vy, (d)
according to equations (2.2), (2.3) and (2.5). (e) Captured SEM image at the same magnification (1500 x ). The same colour bar
is applied to all maps. 100 pixel x 100 pixel ROI with 90% overlap were used in DIC analysis. (Online version in colour.)

and therefore pg can, in principle, be determined unambiguously by any one of

 LIsl - (0Fg,/0x = 9F5,/0y)]

S T I (2.26)
sl (9F, /9% — 0F%, /oy)]
S T S @27)
-(dFC./9x — OFS. /0
" sl @R /o~ 0P ) oos)

[bg - (s3 - 13)]
3. Results

(a) Slip resulted total strain and total rotation: high spatial resolution digital image
correlation

The in plane deformation gradient tensor F, total strain E and total rotation R were determined
using HR-DIC of SEM images after each interruption of the mechanical test, based on equations
(2.1), (2.2) and (2.5), and the obtained total strain and total rotation matrix components at 2300 N
are shown in figure 6. Within these data, the out-of-plane slip can be seen as topography in the
SEM image, and the consequence of in-plane slip can be seen within the HR-DIC maps as shown
in figure 6e.

The strain component Ey, as shown in figure 6a has the highest magnitude among all
strain components, as this is along the direction of the macroscopic loading. By contrast, strain
component E,y as shown in figure 6b has a lower magnitude and are of opposite sign. The total
rotation reveals that the crystal rotated in opposite directions between slip bands as shown in w12
as shown in figure 6d.

(b) Evolution of effective total strain: high spatial resolution digital image correlation

The effective total strain was calculated to represent the strain as a scalar component and
illustrates the distribution of strain caused by slip on a single slip system. Qualitative maps and
quantitative assessment of effective strain have been presented in figures 7 and 8, respectively. As
shown in figure 7b, at 2100 N loading where the sample just went beyond yield, several parallel
localized bands with relatively high strain were found in the effective strain map. The direction
of these slip bands agrees with the predicted slip line by Schmid factor analysis (figure 5) and
matches qualitative evidence of out of plane slip shown in SEM micrographs (figure 6e). At this
microscopic length scale, the deformation is very heterogeneous and this can also be observed
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40 pm

Figure 7. The HR-DIC measured effective strain maps as a function of applied load. (a) Schematically illustrates three-point
bending test where red insert on bend represent HR-DICROL. (b) Total effective strain map at 2100 N load determined by equation
(2.3), panels (c), (d) and (e) show the development of effective strain maps at 2200, 2500 and 2700 N, respectively. The sub-
window size in DIC analysis was set as 100 pixel x 100 pixel with 90% overlap. (Online version in colour.)

0.12

= DIC effective strain measurement

0.10

0.08

0.06

0.04

Eeffective

0.02+

0 L

~0.02 . : : . :
1800 2000 2200 2400 2600 2800 3000

load (N)

Figure 8. Statistical analysis of effective total strain map obtained by HR-DIC technique. The map-averaged mean values
were calculated as arithmetic mean of each map and indicated as middle point of error bars. Standard deviation of maps was
calculated and represented by the length of error bars.

within distributions of effective strain shown in figure 8. For instance, at 2500 N, the map-
averaged mean value is approximately 0.04 its standard deviation has a range of approximately
0.01-0.07.

These locally resolved maps of total strain and total rotation reveal that with increasing
loading, the primary slip bands were broadened. And more slip bands appeared in effective strain
maps as shown in figure 7c—e. Furthermore, higher strain was accumulated along these primary
slip bands. Map-averaged values and statistical distributions of the range of strain values revealed
in figure 8 that the mean effective strain value and standard deviation increased with increasing
loading.

06905107 2L ¥ 205 2014 BioBuiysijgndizaposieforredss


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on January 29, 2016

%10

curl (F),. 2.0 P Gnp based on curl (F),

15
(a) 10 @

0.5
0
0.5
-1.0
-1.5
-2.0

Figure 9. (a,b) Determined term curl(F);; map at 2300 N and its corresponding GND density map at log 10 scale. (Online version
in colour.)

(c) Curl(F)and geometrically necessary dislocation density based on high spatial resolution
digital image correlation measurement

To experimentally validate the geometric compatibility condition based on equation (2.17), we
used DIC measured F to check whether terms within curl(F) would be equal to zero and thereby
satisfy one of the core theories of plasticity. As only in-plane deformation gradient terms (Fyy,
Fyy, Fyy and Fyy) were measured explicitly with the HR-DIC approach, the derivative along out
of plane direction Z was not available. However, we can directly determine one of nine terms of
curl(F) : curl(F)y,, which is sufficient to allow us to verify the compatibility condition.

The calculated curl(F),,; map is shown in figure 9a. The majority of points have a magnitude
close to 1 x 10~ m~!. This is a relatively uniformly distribution and no obvious variations
occurred, even in light of clear heterogeneities shown within maps of F that include significant
variations due to the presence of heterogeneous deformation associated with discrete crystal slip
within the slip bands. As the magnitude of curl(F) may be difficult to interpret, we also present the
‘effective single slip resulting GND density” based on curl(F),, by adopting equation (2.24). This
provides an easier to interpret field that can be linked with physical deformation mechanisms
directly. Figure 9b shows estimated GND density map for which the map-averaged GND density
is close to zero (5.2 x 10! dislocation per m?). This value is impressively small compared with
typical semiconductor silicon, which is deemed virtually defect free with a dislocation content of
1 x 108 perm? or less.

(d) High angular resolution electron backscatter diffraction measured elastic strain and
|attice rotation due to slip bands

Maps of the elastic deformation tensor terms are shown in figure 104, from HR-EBSD analysis of
a similar region (although on the reverse face) after the 2300 N deformation step. The reference
point for each map is selected to be at the top left corner.

The HR-EBSD maps of elastic strain show the presence of the slip bands are regions of contrast
on a relatively uniform background in figure 10a. Relatively high concentration of elastic strain
E3. E5y and Ej, are found within slip bands as shown in figure 10b,¢,f. Furthermore, within the
lattice rotation field there is a long-range lattice rotation gradient in w3, and f, as shown in
figure 10, i. There is also some sharp contrast in the rotation fields associated with the presence
of the slip bands in wy, as shown in figure 10;.

(e) High angular resolution electron backscatter diffraction determined curl(F¢) and
geometrically necessary dislocation density

HR-EBSD was able to obtain the complete elastic deformation gradient matrix. This enables direct
measurement of three complete terms of curl(F¢) as shown in figure 11a—c. These three terms
enable independent calculation of the GND density for single slip, as shown in figure 11d—f.
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Figure 10. HR-EBSD measured full elastic deformation field due to slip bands at 2300 N, e.g. elastic strain maps (b—g) and lattice
rotation maps (h—j) at an ROl (a) which is schematically shown and its corresponding SEM image is shown in (a). EBSD scanning
step size was 0.25 um. Owing to unknown deformation state for selected reference point, all points in elastic strain and lattice
rotation map were normalized by subtracting map-averaged mean value. (Online version in colour.)

Comparison of these three curl(F¢) terms (figure 11) to curl(F)y, as shown in figure 9, shows
that the three terms of curl(F®) in figure 11 are significantly larger and have more noise than
curl(F)y; (5000 to 2 x 107°m™~1). All three curl(F®) terms have similar magnitude.

(f) Evolution of elastic strain and geometrically necessary dislocation density as a function
of applied load

For the HR-EBSD, a reference point is taken within each map. Therefore the absolute value
of elastic strain is (effectively) arbitrary for comparison between loading steps. Therefore, we
select to analyse the range of the distributions. As demonstrated in figures 12 and 13 there is no
systematic trend in the elastic deformation fields such as elastic strain, lattice rotation and GND
density at 2300 and 2900 N. This is in contrast to the total deformation measured by HR-DIC as
shown in figures 7 and 8.
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Figure11. Three HR-EBSD obtained curl(F¢) terms: curl(F¢)y, (a), curl(F€),, (b) and curl(F®),, (c) based on equation (2.21). Panels
(d—f) are the corresponding GND density maps calculated based on equation (2.24)—(2.26). (Online version in colour.)
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Figure 12. The development of elastic strain Efy (a, b), rotation wjy (d, e) and GND density (g, h) maps at 2300 and 2900 N.
Panels (c,f,i) show histograms of statistical distribution and evolution of these three variables at 2300 and 2900 N, respectively.
(Online version in colour.)
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Figure 13. (a) The development of standard deviation of elastic strain component £}, based on each map measured by the HR-
EBSD technique, as a function of applied load. (b) The error bar plot of GND density as a function of applied load. The middle
point of error bars indicates the map-averaged arithmetic mean values, and the length of error bar represents half of standard
deviation for each obtained map.
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Figure 14. A comparison between HR-DIC obtained total deformation (total strain and total rotation) and HR-EBSD determined
elastic deformation (elastic strain and lattice rotation) at 2300 N. £, (a,b) and e (d, €) were selected components. The same
colour bar was used in all maps. Panels (c,f) show line profile comparison between total and elastic strain in xx-direction (c) and
rotation in xy-axis (d). The selected lines were indicated as dash lines in (a,b,d,e). (Online version in colour.)

(g) Comparison of total and elastic deformation: high angular resolution electron
backscatter diffraction and high spatial resolution digital image correlation

As the total deformation in an object is achieved by the combination of plastic deformation and
elastic deformation, we compare contributions of elastic deformation to the total deformation.
Figure 14 shows strain components xx and rotation component xy in both HR-DIC and HR-
EBSD obtained maps at 2300 N, using the same colour scale. We can clearly see that the elastic
deformation is very small compared with total deformation.

06905107 2L ¥ 205 Y 201 BioBuiysiigndfaposieforeds; H


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on January 29, 2016

4. Discussion

The range of experimental techniques now available to probe deformation in crystalline materials
is impressive and this provides us new insight into microstructure performance with high
fidelity at a very local scale. In this study we have focused on exploring deformation during
an interrupted loading campaign on an FCC Ni-based superalloy single crystal. Using HR-
DIC, we have tracked the total deformation gradient, from step to step, which clearly illustrates
that heterogeneous deformation occurs and that slip leads to strain localization. Analysis of the
deformation fields reveals that they do indeed obey compatibility requirements as the available
curl(F) component is zero (figure 10a,b). This improves our confidence when applying crystal
plasticity simulation tools work [15,27]. Furthermore, the spatial resolution of HR-DIC implies
that for some deformation mechanisms more highly refined modelling tools should be developed
to accurately capture the precise crystal mechanisms at play, including slip plane spacing and
saturation of plastic flow during hardening.

The complementary nature of HR-EBSD to access the elastic deformation components has
been realized to assess microstructure heterogeneity at a similar length scale within the same
sample (but notably on the reverse to enable ‘in parallel’ analysis). The single slip nature of
this deformation simplifies our analysis significantly and affords us exquisite detail to study
the precise components of the elastic strain, lattice rotation, and curl(F¢) fields for further
interrogation.

The elastic deformation terms, shown in figure 10, reveal significant elastic strains within
the slip bands. This supports the idea that the slip bands are hardening and supporting local
deformation through the presence of, perhaps, tightly bonded dipoles from expanding dislocation
loops. The saturation of the slip bands, as seen within the HR-DIC maps, and subsequent
activation of neighbouring slip planes implies that these dislocations contribute to local hardening
within active slip planes and contribute significantly to hardening in single slip. Dislocations
bonded closely together would likely result in a very small long-range strain field and minimal
lattice curvature, but the spatial resolution of these HR-EBSD maps is exceptionally good
(250nm), and therefore, some highly stressed regions are observed in the elastic strain fields.
These extreme values of strain, found near to dislocations stored within the crystal lattice, support
analysis of extreme values of stress within polycrystal maps that are thought to be contributed
from probing very close to a dislocation core and this has enabled Wilkinson et al. [58] to probe the
total dislocation density from an interrogation of the tails of the stress distribution to a supported
dislocation density.

We further note that the slip bands cause local gradients in strain and lattice rotation, which
means that there are likely to be some geometrically necessary dislocations (which support these
elastic strain gradients). However, we note that the curl(F®) terms that contain only elastic strain
gradients are very noisy when compared with those that analyse the lattice rotation terms. This
supports earlier statements [56] that in metallic systems the elastic strain gradients are usually
significantly lower than the lattice rotation gradients and justifies typical assumptions regarding
use of the Nye form of the dislocation density tensor, rather than the more complete Kroner form.

Longer range elastic rotations were observed in figure 10%, i were mainly due to the location
of the EBSD map on the sample which was near middle and slightly skewed to the right. The
map itself was not subjected to perfect tension in this region, as it is a subregion of a three-point
bend sample. The strain gradient is very subtle and not visible in the long-range total strain
fields (figure 8), as the elastic rotations measured from rotation of the atomic lattice are very
small (figure 10).

The elastic deformation is limited by an upper bound due to the onset of plasticity. The elastic
strain measurements are also taken when the system is not under external load. The elastic
deformation as shown in figure 124, b does not increase with increasing load. As our experiment
was carefully designed for unconstrained single slip, there is no geometrical constraint (e.g. other
slip systems, GBs) to prevent dislocations from slipping out from sample. It explains why we do
not have accumulation of elastic deformation with the increasing of load.
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Figure 15. Two plastic strain gradient accommodation modes in a single slip model. (a) The crystal is constrained, such that
GNDs are required to accommodate plastic strain gradients; (b) the crystal is unconstrained, such that GNDs are not necessarily
needed for the resulting plastic strain gradient. Instead, plastic rotation can accommodate plastic strain gradients.

A careful comparison of total deformation and elastic deformation is shown in figure 14, and it
is found that single slip resulted in significant total strain and rotation gradient across slip bands.
As total deformation consists of plastic deformation and elastic deformation, the majority part
of total deformation was attributed from plasticity. This indicates that very high plastic strain
gradients are present across slip bands. A casual observer could unfortunately conclude that such
high plastic strain gradients would directly lead to lattice curvature and hence high GND density
measured with HR-EBSD. Our experiments reveal this not to be the case (figure 12d-g).

Significant total strain gradients were measured by HR-DIC across slip bands. For instance
at 2200 N, slip bands has strain magnitude larger than 10% and the non-slip regions have zero
strain as shown in figure 9c. Based on Ashby’s theory [24] as shown in figure 154, it would be
expected that such high strain gradient (elastic strain is found to be small) would result in a
significantly high GND density across slip bands. However, HR-EBSD estimated GND density
cross slip bands were found to be relatively small (1 x 103 m~2) as shown in figure 12d—f. This
difference is interesting and requires a careful consideration of all the terms that cause changes in
the total strain, F.

The reason for this apparent difference is due to the nature of crystal slip and contributions to
the rotation within the total deformation term. A schematic of single slip in crystalline materials is
illustrated in figure 15b. Here we have illustrated deformation that was caused by dislocation slip
on the primary slip system. Within slip bands dislocations were driven by resolved shear stress
and slipped on individual slip planes. As dislocations slip out of the free surface of the sample,
plastic strain was generated. However, the bonding at the atomic scale within the crystal lattice
was left unchanged. This is particularly important in single crystalline materials, where there
are no geometric constraints imposed unlike neighbouring grains in polycrystalline materials,
and therefore the lattices were able to rotate freely. The lack of change in the local crystal lattice
can clearly be observed with diffraction techniques and has been highlighted within the HR-
EBSD studies here (figure 12d, e) which do not significantly show evidence of the plastic slip (in
particular when compared to the topography of the slip bands or the in-plane shear as revealed
with HR-DIC). The HR-EBSD most markedly reveals longer range lattice rotations across the map,
which we ascribe to the bending of the three-point bend sample.
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Figure 16. Schematic illustration of continuum rotation (plastic rotation) and lattice rotation. The blue rectangles represent
undeformed crystal lattice and red rectangles corresponding to deformed lattice due to continuum rotation and lattice rotation,
respectively. (Online version in colour.)

We argue that the missing link between the total deformation revealed with HR-DIC and the
elastic deformation revealed with HR-EBSD is the continuum rotation of the sample due to the
progressive operation of crystal slip. This results in a plastic rotation as well.

It is important to clarify that plastic rotation (continuum rotation) and the elastic rotation
(lattice rotation) are very different in continuum mechanics. The total rotation can be divided
into plastic and elastic rotations as shown in figure 16. If only single slip occurs as shown in
figure 15b, lattice orientation is not necessarily changed and the frame would be rotated as shown
in figure 16a. This type of rotation is defined usually as continuum rotation or plastic rotation. In
this case, although highly localized plastic strain gradients exist, no GNDs are required to fulfil
the compatibility condition. Therefore, HR-DIC observed strain gradients can be accommodated
easily by continuum rotation either side of the slip band.

Where there is significant constraint, it is unlikely that the difference between HR-DIC
measurements of total strain gradient and HR-EBSD measurement of elastic rotation gradient
would be as marked, as the dislocations are rarely able to escape (although these dislocations
will likely cause significant gradients towards the grain boundaries, rather than across individual
slip bands). There could be some subtle differences that render direct comparison of HR-EBSD
measured F¢ and HR-DIC F difficult. We note that, likely due to constraint, raised GND density
near grain boundaries has been routinely observed in Cu with HR-EBSD [59,60].

We demonstrate that the combination of HR-DIC and HR-EBSD techniques provides unique
and comprehensive information on understanding deformation processes in crystalline materials.
The application of these techniques can be extended to address more complicated problems in
polycrystalline materials such as ductility increase in steel through non-proportional loading
(biaxial or torsion) [61,62]. The experiment must however, be carefully designed as HR-DIC is
a two-dimensional surface measurement technique; and although HR-EBSD can be extended to
three dimensions, extreme care must also be taken [45].

5. Conclusion

We have observed deformation of a single crystal of an Ni superalloy at room temperature
with localized measurements of total deformation and elastic deformation with HR-DIC and
HR-EBSD, respectively. This has enabled us to consider relative contributions to components of
the various forms of the kinematic description of crystal deformation employed by continuum
mechanics. Our most importance observation is that the so-called GNDs, which are observed in
maps of elastic deformation gradient, are related to particular components of the plastic strain
gradient. When crystal deformation is not constrained, significant plastic strain gradients can be
observed due to the progressive operation of slip systems and dislocations emerging from the
free surface. This highlights the complementary nature of experimental tools in understanding
the complete deformation state of deformed materials.
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In brief:

— incompatibility is not obvious in elastic deformation field: not many GNDs were required
to fill slip bands (slip bands did not cause plastic strain gradients);

— long-range rotation gradients exist both in plane and out of plane captured by the position
of EBSD maps;

— relatively small elastic curvature was formed adjacent to slip bands;

— localized residual stresses are present across slip bands—likely due to the storage of
dipoles within the slipped bands;

— owing to the localized nature of single slip and the likely cross interaction of dislocations
within the slip to form dipole structures, it is not clear if GND density increases with
progressive strain during single slip; and

— for unconstrained deformation, continuum rotation dominates the total rotation and
lattice rotation must be measured directly for GND analysis.
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