15,453 research outputs found

    Aerodynamic preliminary analysis system 2. Part 1: Theory

    Get PDF
    An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. The program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies

    On the Use of Group Theoretical and Graphical Techniques toward the Solution of the General N-body Problem

    Full text link
    Group theoretic and graphical techniques are used to derive the N-body wave function for a system of identical bosons with general interactions through first-order in a perturbation approach. This method is based on the maximal symmetry present at lowest order in a perturbation series in inverse spatial dimensions. The symmetric structure at lowest order has a point group isomorphic with the S_N group, the symmetric group of N particles, and the resulting perturbation expansion of the Hamiltonian is order-by-order invariant under the permutations of the S_N group. This invariance under S_N imposes severe symmetry requirements on the tensor blocks needed at each order in the perturbation series. We show here that these blocks can be decomposed into a basis of binary tensors invariant under S_N. This basis is small (25 terms at first order in the wave function), independent of N, and is derived using graphical techniques. This checks the N^6 scaling of these terms at first order by effectively separating the N scaling problem away from the rest of the physics. The transformation of each binary tensor to the final normal coordinate basis requires the derivation of Clebsch-Gordon coefficients of S_N for arbitrary N. This has been accomplished using the group theory of the symmetric group. This achievement results in an analytic solution for the wave function, exact through first order, that scales as N^0, effectively circumventing intensive numerical work. This solution can be systematically improved with further analytic work by going to yet higher orders in the perturbation series.Comment: This paper was submitted to the Journal of Mathematical physics, and is under revie

    Aerodynamic preliminary analysis system. Part 1: Theory

    Get PDF
    A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple non-planar surfaces of arbitrary planform and open or closed slender bodies of non-circular contour may be analyzed. Longitudinal and lateral-directional static and rotary derivative solutions may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies

    Understanding jumping to conclusions in patients with persecutory delusions: working memory and intolerance of uncertainty

    No full text
    Background. Persecutory delusions are a key psychotic experience. A reasoning style known as ā€˜jumping to conclusionsā€™ (JTC) ā€“ limited information gathering before reaching certainty in decision making ā€“ has been identified as a contributory factor in the occurrence of delusions. The cognitive processes that underpin JTC need to be determined in order to develop effective interventions for delusions. In the current study two alternative perspectives were tested: that JTC partially results from impairment in information-processing capabilities and that JTC is a motivated strategy to avoid uncertainty.Method. A group of 123 patients with persistent persecutory delusions completed assessments of JTC (the 60:40 beads task), IQ, working memory, intolerance of uncertainty, and psychiatric symptoms. Patients showing JTC were compared with patients not showing JTC.Results. A total of 30 (24%) patients with delusions showed JTC. There were no differences between patients who did and did not jump to conclusions in overall psychopathology. Patients who jumped to conclusions had poorer working memory performance, lower IQ, lower intolerance of uncertainty and lower levels of worry.Working memory and worry independently predicted the presence of JTC.Conclusions. Hasty decision making in patients with delusions may partly arise from difficulties in keeping information in mind. Interventions for JTC are likely to benefit from addressing working memory performance, while in vivo techniques for patients with delusions will benefit from limiting the demands on working memory. The study provides little evidence for a contribution to JTC from top down motivational beliefs about uncertainty

    Genetic Associations With Depression in Ancestrally Diverse Populations

    Get PDF

    Investigating Heating and Cooling in the BCS & B55 Cluster Samples

    Full text link
    We study clusters in the BCS cluster sample which are observed by Chandra and are more distant than redshift, z>0.1. We select from this subsample the clusters which have both a short central cooling time and a central temperature drop, and also those with a central radio source. Six of the clusters have clear bubbles near the centre. We calculate the heating by these bubbles and express it as the ratio r_heat/r_cool=1.34+/-0.20. This result is used to calculate the average size of bubbles expected in all clusters with central radio sources. In three cases the predicted bubble sizes approximately match the observed radio lobe dimensions. We combine this cluster sample with the B55 sample studied in earlier work to increase the total sample size and redshift range. This extended sample contains 71 clusters in the redshift range 0<z<0.4. The average distance out to which the bubbles offset the X-ray cooling in the combined sample is at least r_heat/r_cool=0.92+/-0.11. The distribution of central cooling times for the combined sample shows no clusters with clear bubbles and t_cool>1.2Gyr. An investigation of the evolution of cluster parameters within the redshift range of the combined samples does not show any clear variation with redshift.Comment: 12 pages, 9 figures, accepted for publication in MNRA

    Geographic Variation in Informed Consent Law: Two Standards for Disclosure of Treatment Risks

    Get PDF
    We analyzed 714 jury verdicts in informed consent cases tried in 25 states in 1985ā€“2002 to determine whether the applicable standard of care (ā€œpatientā€ vs. ā€œprofessionalā€ standard) affected the outcome. Verdicts for plaintiffs were significantly more frequent in states with a patient standard than in states with a professional standard (27 percent vs. 17 percent, P = 0.02). This difference in outcomes did not hold for other types of medical malpractice litigation (36 percent vs. 37 percent, P = 0.8). The multivariate odds of a plaintiffā€™s verdict were more than twice as high in states with a patient standard than in states with a professional standard (odds ratio = 2.15, 95% confidence interval = 1.32ā€“3.50). The lawā€™s expectations of clinicians with respect to risk disclosure appear to vary geographically

    Hierarchy of stratigraphic forcing: Example from Middle Pennsylvanian shelf carbonates of the Paradox basin

    Get PDF
    Middle Pennsylvanian (Desmoinesian) shelf carbonates in the southwestern Paradox basin display three superimposed orders of stratigraphic cyclicity with a systematic vertical succession of facies, cycle, and sequence stacking patterns. Fifth-order cycles [34 cycles in a 645-ft (197-m) section; average 20 ft (6.1 m) thick; mean period 29,000 years] are grouped into fourth-order sequences [average 100 ft (30 m) thick; mean period 257,000 years], which in turn stack vertically to define a third-order sequence [650+ ft (200+ m) thick; 2-3 m.y. duration]. Fifth-order cycles are composed of shallow ing-upward packages of predominantly subtidal shelf carbonates with sharp cycle boundaries (either exposure or flooding surfaces). Fifth-order cycles are packaged into fourth-order sequences bounded by regionally correlative subaerial exposure surfaces. These type 1 sequences contain a downdip, restricted lowstand wedge of evaporites and quartz clastics in topographic lows on the Paradox shelf (intrashelf depressions). The lowstand systems tract is overlain by a regionally correlative transgressive shaly mudstone (condensed section) and a highstand systems tract composed of thinning-upward, aggradational fifth-order cycles. Systematic variation in the thickness of fourth-order sequences (thinning upward followed by thickening upward) and systematic variations in the number of fifth-order cycles and fourth-order sequences (decreasing followed by increasing number) defines a third-order accommodation trend that is also regionally correlative. High-frequency cycles and sequences are interpreted as predominantly aggradational allocycles generated in response to composite fourth- and fifth-order glacio-eustatic sea-level fluctuations. Two different orbital forcing (Milankovitch) scenarios are evaluated to explain the composite stratigraphic cyclicity of the Paradox sequences, each of which is plausible given Desmoinesian age estimates. The cycle, sequence, and facies stacking patterns have been replicated by means of computer modeling by superimposing composite high-frequency glacio-eustasy atop regional subsidence using depth-dependent, sedimentation

    Hierarchy of stratigraphic forcing: Example from Middle Pennsylvanian shelf carbonates of the Paradox basin

    Get PDF
    Middle Pennsylvanian (Desmoinesian) shelf carbonates in the southwestern Paradox basin display three superimposed orders of stratigraphic cyclicity with a systematic vertical succession of facies, cycle, and sequence stacking patterns. Fifth-order cycles [34 cycles in a 645-ft (197-m) section; average 20 ft (6.1 m) thick; mean period 29,000 years] are grouped into fourth-order sequences [average 100 ft (30 m) thick; mean period 257,000 years], which in turn stack vertically to define a third-order sequence [650+ ft (200+ m) thick; 2-3 m.y. duration]. Fifth-order cycles are composed of shallow ing-upward packages of predominantly subtidal shelf carbonates with sharp cycle boundaries (either exposure or flooding surfaces). Fifth-order cycles are packaged into fourth-order sequences bounded by regionally correlative subaerial exposure surfaces. These type 1 sequences contain a downdip, restricted lowstand wedge of evaporites and quartz clastics in topographic lows on the Paradox shelf (intrashelf depressions). The lowstand systems tract is overlain by a regionally correlative transgressive shaly mudstone (condensed section) and a highstand systems tract composed of thinning-upward, aggradational fifth-order cycles. Systematic variation in the thickness of fourth-order sequences (thinning upward followed by thickening upward) and systematic variations in the number of fifth-order cycles and fourth-order sequences (decreasing followed by increasing number) defines a third-order accommodation trend that is also regionally correlative. High-frequency cycles and sequences are interpreted as predominantly aggradational allocycles generated in response to composite fourth- and fifth-order glacio-eustatic sea-level fluctuations. Two different orbital forcing (Milankovitch) scenarios are evaluated to explain the composite stratigraphic cyclicity of the Paradox sequences, each of which is plausible given Desmoinesian age estimates. The cycle, sequence, and facies stacking patterns have been replicated by means of computer modeling by superimposing composite high-frequency glacio-eustasy atop regional subsidence using depth-dependent, sedimentation
    • ā€¦
    corecore