24,096 research outputs found
The Least Action Principle And The Spin Of Galaxies In The Local Group
Using Peebles' least action principle, we determine trajectories for the
galaxies in the Local Group and the more massive galaxies in the Local
Neighbourhood. We deduce the resulting angular momentum for the whole of the
Local Group and study the tidal force acting on the Local Group and its
galaxies. Although Andromeda and the Milky Way dominate the tidal force acting
on each other during the present epoch, we show that there is a transition time
at before which the tidal force is dominated by galaxies outside
the Local Group in each case. This shows that the Local Group can not be
considered as an isolated system as far as the tidal forces are concerned. We
integrate the tidal torques acting on the Milky Way and Andromeda and derive
their spin angular momenta, obtaining results which are comparable with
observation.Comment: 16 pages (5 figures available on request), plain TeX, IoA-93-01-AM
Clustering as an example of optimizing arbitrarily chosen objective functions
This paper is a reflection upon a common practice of solving various types of learning problems by optimizing arbitrarily chosen criteria in the hope that they are well correlated with the criterion actually used for assessment of the results. This issue has been investigated using clustering as an example, hence a unified view of clustering as an optimization problem is first proposed, stemming from the belief that typical design choices in clustering, like the number of clusters or similarity measure can be, and often are suboptimal, also from the point of view of clustering quality measures later used for algorithm comparison and ranking. In order to illustrate our point we propose a generalized clustering framework and provide a proof-of-concept using standard benchmark datasets and two popular clustering methods for comparison
Alternative Splicing and Polyadenylation Contribute to the Generation of hERG1 C-terminal Isoforms
The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel. Several hERG1 isoforms with different N- and C-terminal ends have been identified. The hERG1a, hERG1b, and hERG1-3.1 isoforms contain the full-length C terminus, whereas the hERG1USOisoforms, hERG1aUSO and hERG1bUSO, lack most of the C-terminal domain and contain a unique C-terminal end. The mechanisms underlying the generation of hERG1USOisoforms are not understood. We show that hERG1 isoforms with different C-terminal ends are generated by alternative splicing and polyadenylation of hERG1 pre-mRNA. We identified an intrinsically weak, noncanonical poly(A) signal, AGUAAA, within intron 9 of hERG1 that modulates the expression of hERG1a and hERG1aUSO. Replacing AGUAAA with the strong, canonical poly(A) signal AAUAAA resulted in the predominant production of hERG1aUSO and a marked decrease in hERG1 current. In contrast, eliminating the intron 9 poly(A) signal or increasing the strength of 5′ splice site led to the predominant production of hERG1a and a significant increase in hERG1 current. We found significant variation in the relative abundance of hERG1 C-terminal isoforms in different human tissues. Taken together, these findings suggest that post-transcriptional regulation of hERG1 pre-mRNA may represent a novel mechanism to modulate the expression and function of hERG1 channels
Sonic levitation apparatus
A sonic levitation apparatus is disclosed which includes a sonic transducer which generates acoustical energy responsive to the level of an electrical amplifier. A duct communicates with an acoustical chamber to deliver an oscillatory motion of air to a plenum section which contains a collimated hole structure having a plurality of parallel orifices. The collimated hole structure converts the motion of the air to a pulsed. Unidirectional stream providing enough force to levitate a material specimen. Particular application to the production of microballoons in low gravity environment is discussed
Calculations for interpretation of solar vector magnetograph data
Computer techniques for data analysis of sunspot observations are presented. Photographic spectra were converted to digital form and analyzed. Methods of determining magnetic field strengths, i.e., the Zeeman effect, are discussed. Errors originating with telescope equipment and the magnetograph are treated. Flow charts of test programs and procedures of the data analysis are shown
Investigating Heating and Cooling in the BCS & B55 Cluster Samples
We study clusters in the BCS cluster sample which are observed by Chandra and
are more distant than redshift, z>0.1. We select from this subsample the
clusters which have both a short central cooling time and a central temperature
drop, and also those with a central radio source. Six of the clusters have
clear bubbles near the centre. We calculate the heating by these bubbles and
express it as the ratio r_heat/r_cool=1.34+/-0.20. This result is used to
calculate the average size of bubbles expected in all clusters with central
radio sources. In three cases the predicted bubble sizes approximately match
the observed radio lobe dimensions.
We combine this cluster sample with the B55 sample studied in earlier work to
increase the total sample size and redshift range. This extended sample
contains 71 clusters in the redshift range 0<z<0.4. The average distance out to
which the bubbles offset the X-ray cooling in the combined sample is at least
r_heat/r_cool=0.92+/-0.11. The distribution of central cooling times for the
combined sample shows no clusters with clear bubbles and t_cool>1.2Gyr. An
investigation of the evolution of cluster parameters within the redshift range
of the combined samples does not show any clear variation with redshift.Comment: 12 pages, 9 figures, accepted for publication in MNRA
Analysis of defect structure in silicon. Characterization of SEMIX material. Silicon sheet growth development for the large area silicon sheet task of the low-cost solar array project
Statistically significant quantitative structural imperfection measurements were made on samples from ubiquitous crystalline process (UCP) Ingot 5848 - 13C. Important correlation was obtained between defect densities, cell efficiency, and diffusion length. Grain boundary substructure displayed a strong influence on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements gave statistically significant information compared to other microanalytical techniques. A surface preparation technique to obtain proper contrast of structural defects suitable for quantimet quantitative image analyzer (QTM) analysis was perfected and is used routinely. The relationships between hole mobility and grain boundary density was determined. Mobility was measured using the van der Pauw technique, and grain boundary density was measured using quantitative microscopy technique. Mobility was found to decrease with increasing grain boundary density
Estimates of nonequilibrium ionization phenomena in the inviscid Apollo plasma sheath
Nonequilibrium ionization in asymmetric plasma sheath determined for Apollo spacecraft at superorbital velocity reentr
Anomalous dynamics of cell migration
Cell movement, for example during embryogenesis or tumor metastasis, is a
complex dynamical process resulting from an intricate interplay of multiple
components of the cellular migration machinery. At first sight, the paths of
migrating cells resemble those of thermally driven Brownian particles. However,
cell migration is an active biological process putting a characterization in
terms of normal Brownian motion into question. By analyzing the trajectories of
wildtype and mutated epithelial (MDCK-F) cells we show experimentally that
anomalous dynamics characterizes cell migration. A superdiffusive increase of
the mean squared displacement, non-Gaussian spatial probability distributions,
and power-law decays of the velocity autocorrelations are the basis for this
interpretation. Almost all results can be explained with a fractional Klein-
Kramers equation allowing the quantitative classification of cell migration by
a few parameters. Thereby it discloses the influence and relative importance of
individual components of the cellular migration apparatus to the behavior of
the cell as a whole.Comment: 20 pages, 3 figures, 1 tabl
- …