2,016 research outputs found

    Stability, reliability and cross-mode correlations of tests in a recommended 8-minute performance assessment battery

    Get PDF
    A need exists for an automated performance test system to study drugs, agents, treatments, and stresses of interest to the aviation, space, and environmental medical community. The purpose of this present study is to evaluate tests for inclusion in the NASA-sponsored Automated Performance Test System (APTS). Twenty-one subjects were tested over 10 replications with tests previously identified as good candidates for repeated-measure research. The tests were concurrently administered in paper-and-pencil and microcomputer modes. Performance scores for the two modes were compared. Data from trials 1 to 10 were examined for indications of test stability and reliability. Nine of the ten APT system tests achieved stability. Reliabilities were generally high. Cross-correlation of microbased tests with traditional paper-and-pencil versions revealed similarity of content within tests in the different modes, and implied at least three cognition and two motor factors. This protable, inexpensive, rugged, computerized battery of tests is recommended for use in repeated-measures studies of environmental and drug effects on performance. Identification of other tests compatible with microcomputer testing and potentially capable of tapping previously unidentified factors is recommended. Documentation of APTS sensitivity to environmental agents is available for more than a dozen facilities and is reported briefly. Continuation of such validation remains critical in establishing the efficacy of APTS tests

    Modular Rake of Pitot Probes

    Get PDF
    The figure presents selected views of a modular rake of 17 pitot probes for measuring both transient and steady-state pressures in a supersonic wind tunnel. In addition to pitot tubes visible in the figure, the probe modules contain (1) high-frequency dynamic-pressure transducers connected through wires to remote monitoring circuitry and (2) flow passages that lead to tubes that, in turn, lead to remote steady-state pressure transducers. Prior pitot-probe rakes were fabricated as unitary structures, into which the individual pitot probes were brazed. Repair or replacement of individual probes was difficult, costly, and time-consuming because (1) it was necessary to remove entire rakes in order to unbraze individual malfunctioning probes and (2) the heat of unbrazing a failed probe and of brazing a new probe in place could damage adjacent probes. In contrast, the modules in the present probe are designed to be relatively quickly and easily replaceable with no heating and, in many cases, without need for removal of the entire rake from the wind tunnel. To remove a malfunctioning probe, one first removes a screw-mounted V-cross-section cover that holds the probe and adjacent probes in place. Then one removes a screw-mounted cover plate to gain access to the steady-state pressure tubes and dynamicpressure wires. Next, one disconnects the tube and wires of the affected probe. Finally, one installs a new probe in the reverse of the aforementioned sequence. The wire connections can be made by soldering, but to facilitate removal and installation, they can be made via miniature plugs and sockets. The connections between the probe flow passages and the tubes leading to the remote pressure sensors can be made by use of any of a variety of readily available flexible tubes that can be easily pulled off and slid back on for removal and installation, respectively

    Direct Minimization Generating Electronic States with Proper Occupation Numbers

    Full text link
    We carry out the direct minimization of the energy functional proposed by Mauri, Galli and Car to derive the correct self-consistent ground state with fractional occupation numbers for a system degenerating at the Fermi level. As a consequence, this approach enables us to determine the electronic structure of metallic systems to a high degree of accuracy without the aid of level broadening of the Fermi-distribution function. The efficiency of the method is illustrated by calculating the ground-state energy of C2_2 and Si2_2 molecules and the W(110) surface to which a tungsten adatom is adsorbed.Comment: 4 pages, 4 figure

    Zener transitions between dissipative Bloch bands. II: Current Response at Finite Temperature

    Full text link
    We extend, to include the effects of finite temperature, our earlier study of the interband dynamics of electrons with Markoffian dephasing under the influence of uniform static electric fields. We use a simple two-band tight-binding model and study the electric current response as a function of field strength and the model parameters. In addition to the Esaki-Tsu peak, near where the Bloch frequency equals the damping rate, we find current peaks near the Zener resonances, at equally spaced values of the inverse electric field. These become more prominenent and numerous with increasing bandwidth (in units of the temperature, with other parameters fixed). As expected, they broaden with increasing damping (dephasing).Comment: 5 pages, LateX, plus 5 postscript figure

    Time evolution of models described by one-dimensional discrete nonlinear Schr\"odinger equation

    Full text link
    The dynamics of models described by a one-dimensional discrete nonlinear Schr\"odinger equation is studied. The nonlinearity in these models appears due to the coupling of the electronic motion to optical oscillators which are treated in adiabatic approximation. First, various sizes of nonlinear cluster embedded in an infinite linear chain are considered. The initial excitation is applied either at the end-site or at the middle-site of the cluster. In both the cases we obtain two kinds of transition: (i) a cluster-trapping transition and (ii) a self-trapping transition. The dynamics of the quasiparticle with the end-site initial excitation are found to exhibit, (i) a sharp self-trapping transition, (ii) an amplitude-transition in the site-probabilities and (iii) propagating soliton-like waves in large clusters. Ballistic propagation is observed in random nonlinear systems. The effect of nonlinear impurities on the superdiffusive behavior of random-dimer model is also studied.Comment: 16 pages, REVTEX, 9 figures available upon request, To appear in Physical Review

    Resonance Effects in the Nonadiabatic Nonlinear Quantum Dimer

    Full text link
    The quantum nonlinear dimer consisting of an electron shuttling between the two sites and in weak interaction with vibrations, is studied numerically under the application of a DC electric field. A field-induced resonance phenomenon between the vibrations and the electronic oscillations is found to influence the electronic transport greatly. For initially delocalization of the electron, the resonance has the effect of a dramatic increase in the transport. Nonlinear frequency mixing is identified as the main mechanism that influences transport. A characterization of the frequency spectrum is also presented.Comment: 7 pages, 6 figure

    The oldest X-ray supernovae: X-ray emission from 1941C, 1959D, 1968D

    Full text link
    We have studied the X-ray emission from four historical Type-II supernovae (the newly-discovered 1941C in NGC 4631 and 1959D in NGC 7331; and 1968D, 1980K in NGC 6946), using Chandra ACIS-S imaging. In particular, the first three are the oldest ever found in the X-ray band, and provide constraints on the properties of the stellar wind and circumstellar matter encountered by the expanding shock at more advanced stages in the transition towards the remnant phase. We estimate emitted luminosities ~ 5 x 10^{37} erg/s for SN 1941C, ~ a few x 10^{37} erg/s for SN 1959D, ~ 2 x 10^{38} erg/s for SN 1968D, and ~ 4 x 10^{37} erg/s for SN 1980K, in the 0.3-8 keV band. X-ray spectral fits to SN 1968D suggest the presence of a harder component, possibly a power law with photon index ~ 2, contributing ~ 10^{37} erg/s in the 2-10 keV band. We speculate that it may be evidence of non-thermal emission from a Crab-like young pulsar.Comment: 6 pages, accepted by ApJ. Revised version with a couple of added references. Thanks to A. Kong and E. Schlegel for their comments. Credit to Holt et al. (2003) for the X-ray discovery of SN 1968D, overlooked in other recent catalog

    Bloch oscillations, Zener tunneling and Wannier-Stark ladders in the time-domain

    Get PDF
    We present a time-domain analysis of carrier dynamics in a semiconductor superlattice with two minibands. Integration of the density-matrix equations of motion reveals a number of new features: (i) for certain values of the applied static electric field strong interband transitions occur; (ii) in static fields the complex time-dependence of the density-matrix displays a sequence of stable plateaus in the low field regime, and (iii) for applied fields with a periodic time-dependence the dynamic response can be understood in terms of the quasienergy spectra.Comment: 4 pages, 6 PostScript figures available from [email protected], REVTEX 3.

    Holstein polarons in a strong electric field: delocalized and stretched states

    Full text link
    The coherent dynamics of a Holstein polaron in strong electric fields is considered under different regimes. Using analytical and numerical analysis, we show that even for small hopping constant and weak electron-phonon interaction, the original discrete Wannier-Stark (WS) ladder electronic states are each replaced by a semi-continuous band if a resonance condition is satisfied between the phonon frequency and the ladder spacing. In this regime, the original localized WS states can become {\em delocalized}, yielding both `tunneling' and `stretched' polarons. The transport properties of such a system would exhibit a modulation of the phonon replicas in typical tunneling experiments. The modulation will reflect the complex spectra with nearly-fractal structure of the semi-continuous band. In the off-resonance regime, the WS ladder is strongly deformed, although the states are still localized to a degree which depends on the detuning: Both the spacing between the levels in the deformed ladder and the localization length of the resulting eigenfunctions can be adjusted by the applied electric field. We also discuss the regime beyond small hopping constant and weak coupling, and find an interesting mapping to that limit via the Lang-Firsov transformation, which allows one to extend the region of validity of the analysis.Comment: 10 pages, 13 figures, submitted to PR

    On Fourier integral transforms for qq-Fibonacci and qq-Lucas polynomials

    Full text link
    We study in detail two families of qq-Fibonacci polynomials and qq-Lucas polynomials, which are defined by non-conventional three-term recurrences. They were recently introduced by Cigler and have been then employed by Cigler and Zeng to construct novel qq-extensions of classical Hermite polynomials. We show that both of these qq-polynomial families exhibit simple transformation properties with respect to the classical Fourier integral transform
    • …
    corecore