research

On Fourier integral transforms for qq-Fibonacci and qq-Lucas polynomials

Abstract

We study in detail two families of qq-Fibonacci polynomials and qq-Lucas polynomials, which are defined by non-conventional three-term recurrences. They were recently introduced by Cigler and have been then employed by Cigler and Zeng to construct novel qq-extensions of classical Hermite polynomials. We show that both of these qq-polynomial families exhibit simple transformation properties with respect to the classical Fourier integral transform

    Similar works