1,011 research outputs found

    Use of QSEN Based Simulation to Orient Nurse Educators: The Role of The Clinical Teacher

    Get PDF
    Background: Simulation has been well documented in the nursing literature as an effective strategy to prepare and teach students clinical based situations (Benner, Sutphen, & Day, 2010). Much of the literature addresses the implementation of simulation into nursing curriculum (Hayden, 2010) and the training of nursing faculty in the pedagogy of nursing simulation (Jeffries, 2008). However, the literature does not address how simulation can be used to train and orient new faculty to the clinical environment. Purpose: The purpose of this simulation project was to utilize the six QSEN core competencies to create simulation templates to orient the novice clinical faculty member to the clinical environment. Project Questions: 1) Does a simulation-based clinical nursing faculty orientation program increase self-perceived competence in the clinical nursing faculty role? 2) What are clinical nursing faculty\u27s perceptions of a simulation-based clinical nursing faculty orientation? Methods: The first phase of this project was to merge the QSEN competencies (Cronenwett et al., 2007) and their respective KSAs to create a template for simulation. Because the competencies are written for nurses, they needed to be adapted for nursing educators. Adapted KSAs for nurse educators were developed and scenarios were created for each of the QSEN competencies: (a) patient-centered care, (b) teamwork and collaboration, (c) evidence-based practice, (d) patient safety, (e) quality improvement, and (f) technology and informatics. The second phase was to pilot the six QSEN competency simulations on novice clinical educators

    Influence of the heterointerface sharpness on exciton recombination dynamics in an ensemble of (In,Al)As/AlAs quantum dots with indirect band-gap

    Full text link
    The dynamics of exciton recombination in an ensemble of indirect band-gap (In,Al)As/AlAs quantum dots with type-I band alignment is studied. The lifetime of confined excitons which are indirect in momentum-space is mainly influenced by the sharpness of the heterointerface between the (In,Al)As quantum dot and the AlAs barrier matrix. Time-resolved photoluminescence experiments and theoretical model calculations reveal a strong dependence of the exciton lifetime on the thickness of the interface diffusion layer. The lifetime of excitons with a particular optical transition energy varies because this energy is obtained for quantum dots differing in size, shape and composition. The different exciton lifetimes, which result in photoluminescence with non-exponential decay obeying a power-law function, can be described by a phenomenological distribution function, which allows one to explain the photoluminescence decay with one fitting parameter only.Comment: 10 pages, 7 figure

    Effects of Molecular Crowding on stretching of polymers in poor solvent

    Full text link
    We consider a linear polymer chain in a disordered environment modeled by percolation clusters on a square lattice. The disordered environment is meant to roughly represent molecular crowding as seen in cells. The model may be viewed as the simplest representation of biopolymers in a cell. We show the existence of intermediate states during stretching arising as a consequence of molecular crowding. In the constant distance ensemble the force-extension curves exhibit oscillations. We observe the emergence of two or more peaks in the probability distribution curves signaling the coexistence of different states and indicating that the transition is discontinuous unlike what is observed in the absence of molecular crowding.Comment: 14 pages, 6 figure

    The Supremum Norm of the Discrepancy Function: Recent Results and Connections

    Full text link
    A great challenge in the analysis of the discrepancy function D_N is to obtain universal lower bounds on the L-infty norm of D_N in dimensions d \geq 3. It follows from the average case bound of Klaus Roth that the L-infty norm of D_N is at least (log N) ^{(d-1)/2}. It is conjectured that the L-infty bound is significantly larger, but the only definitive result is that of Wolfgang Schmidt in dimension d=2. Partial improvements of the Roth exponent (d-1)/2 in higher dimensions have been established by the authors and Armen Vagharshakyan. We survey these results, the underlying methods, and some of their connections to other subjects in probability, approximation theory, and analysis.Comment: 15 pages, 3 Figures. Reports on talks presented by the authors at the 10th international conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Sydney Australia, February 2011. v2: Comments of the referee are incorporate

    Potential functions of LEA proteins from the brine shrimp Artemia franciscana - Anhydrobiosis meets bioinformatics.

    Get PDF
    Late embryogenesis abundant (LEA) proteins are a large group of anhydrobiosis-associated intrinsically disordered proteins (IDP), which are commonly found in plants and some animals. The brine shrimp Artemiafranciscana is the only known animal that expresses LEA proteins from three, and not only one, different groups in its anhydrobiotic life stage. The reason for the higher complexity in the A. franciscana LEA proteome (LEAome), compared with other anhydrobiotic animals, remains mostly unknown. To address this issue, we have employed a suite of bioinformatics tools to evaluate the disorder status of the ArtemiaLEAome and to analyze the roles of intrinsic disorder in functioning of brine shrimp LEA proteins. We show here that A. franciscanaLEA proteins from different groups are more similar to each other than one originally expected, while functional differences among members of group 3 are possibly larger than commonly anticipated. Our data show that although these proteins are characterized by a large variety of forms and possible functions, as a general strategy, A. franciscana utilizes glassy matrix forming LEAs concurrently with proteins that more readily interact with binding partners. It is likely that the function(s) of both types, the matrix-forming and partner-binding LEA proteins, are regulated by changing water availability during desiccation

    Uniaxial stress and Zeeman spectroscopy of the 3.324 eV Ge-related photoluminescence in ZnO

    Get PDF
    Recently observed photoluminescence (PL) in ZnO, positioned at 3.324 eV and known to be related to Ge impurities, is investigated here by uniaxial stress and Zeeman spectroscopy measurements. The 3.324 eV PL line shifts but does not split under uniaxial stress both parallel and perpendicular to the c-axis, indicating trigonal defect symmetry. This reinforces the findings of prior work that the defect centre is related to a substitutional Ge impurity in ZnO. Applied magnetic fields result in linear splittings of the line into two components for fields parallel and perpendicular to the c-axis. This result combined with the temperature dependence of the Zeeman spectra enables the line to be assigned to neutral donor bound exciton recombination. Some possible models for the defect are considered

    Widespread recombination, reassortment, and transmission of unbalanced compound viral genotypes in natural arenavirus infections.

    Get PDF
    Arenaviruses are one of the largest families of human hemorrhagic fever viruses and are known to infect both mammals and snakes. Arenaviruses package a large (L) and small (S) genome segment in their virions. For segmented RNA viruses like these, novel genotypes can be generated through mutation, recombination, and reassortment. Although it is believed that an ancient recombination event led to the emergence of a new lineage of mammalian arenaviruses, neither recombination nor reassortment has been definitively documented in natural arenavirus infections. Here, we used metagenomic sequencing to survey the viral diversity present in captive arenavirus-infected snakes. From 48 infected animals, we determined the complete or near complete sequence of 210 genome segments that grouped into 23 L and 11 S genotypes. The majority of snakes were multiply infected, with up to 4 distinct S and 11 distinct L segment genotypes in individual animals. This S/L imbalance was typical: in all cases intrahost L segment genotypes outnumbered S genotypes, and a particular S segment genotype dominated in individual animals and at a population level. We corroborated sequencing results by qRT-PCR and virus isolation, and isolates replicated as ensembles in culture. Numerous instances of recombination and reassortment were detected, including recombinant segments with unusual organizations featuring 2 intergenic regions and superfluous content, which were capable of stable replication and transmission despite their atypical structures. Overall, this represents intrahost diversity of an extent and form that goes well beyond what has been observed for arenaviruses or for viruses in general. This diversity can be plausibly attributed to the captive intermingling of sub-clinically infected wild-caught snakes. Thus, beyond providing a unique opportunity to study arenavirus evolution and adaptation, these findings allow the investigation of unintended anthropogenic impacts on viral ecology, diversity, and disease potential

    Spin-flip Raman scattering of the Γ\Gamma-X mixed exciton in indirect band-gap (In,Al)As/AlAs quantum dots

    Full text link
    The band structure of type-I (In,Al)As/AlAs quantum dots with band gap energy exceeding 1.63 eV is indirect in momentum space, leading to long-lived exciton states with potential applications in quantum information. Optical access to these excitons is provided by mixing of the Γ\Gamma- and X-conduction band valleys, from which control of their spin states can be gained. This access is used here for studying the exciton spin-level structure by resonant spin-flip Raman scattering, allowing us to accurately measure the anisotropic hole and isotropic electron gg factors. The spin-flip mechanisms for the indirect exciton and its constituents as well as the underlying optical selection rules are determined. The spin-flip intensity is a reliable measure of the strength of Γ\Gamma-X-valley mixing, as evidenced by both experiment and theory.Comment: 5 pages, 3 figure
    corecore