293 research outputs found

    Single to Double Hump Transition in the Equilibrium Distribution Function of Relativistic Particles

    Get PDF
    We unveil a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-J\"uttner distributions, all exhibiting the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on two-dimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.Comment: 5 pages, 5 figure

    Nonlocal observables and lightcone-averaging in relativistic thermodynamics

    Full text link
    The unification of relativity and thermodynamics has been a subject of considerable debate over the last 100 years. The reasons for this are twofold: (i) Thermodynamic variables are nonlocal quantities and, thus, single out a preferred class of hyperplanes in spacetime. (ii) There exist different, seemingly equally plausible ways of defining heat and work in relativistic systems. These ambiguities led, for example, to various proposals for the Lorentz transformation law of temperature. Traditional 'isochronous' formulations of relativistic thermodynamics are neither theoretically satisfactory nor experimentally feasible. Here, we demonstrate how these deficiencies can be resolved by defining thermodynamic quantities with respect to the backward-lightcone of an observation event. This approach yields novel, testable predictions and allows for a straightforward-extension of thermodynamics to General Relativity. Our theoretical considerations are illustrated through three-dimensional relativistic many-body simulations.Comment: typos in Eqs. (12) and (14) corrected, minor additions in the tex

    Relativistic Brownian motion: From a microscopic binary collision model to the Langevin equation

    Get PDF
    The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy point-like Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, non-relativistic LE is deduced from this model, by taking into account the non-relativistic conservation laws for momentum and kinetic energy. Subsequently, this procedure is generalized to the relativistic case. There, it is found that the relativistic stochastic force is still \gd-correlated (white noise) but does \emph{no} longer correspond to a Gaussian white noise process. Explicit results for the friction and momentum-space diffusion coefficients are presented and discussed.Comment: v2: Eqs. (17c) and (28) corrected; v3: discussion extended, Eqs. (33) added, thereby connection to earlier work clarified; v4: final version, accepted for publication in Phys. Rev.

    Relativistic diffusion of elementary particles with spin

    Full text link
    We obtain a generalization of the relativistic diffusion of Schay and Dudley for particles with spin. The diffusion equation is a classical version of an equation for the Wigner function of an elementary particle. The elementary particle is described by a unitary irreducible representation of the Poincare group realized in the Hilbert space of wave functions in the momentum space. The arbitrariness of the Wigner rotation appears as a gauge freedom of the diffusion equation. The spin is described as a connection of a fiber bundle over the momentum hyperbolic space (the mass-shell). Motion in an electromagnetic field, transport equations and equilibrium states are discussed.Comment: 21 pages,minor changes,the version published in Journ.Phys.

    Deformed Algebras from Inverse Schwinger Method

    Full text link
    We consider a problem which may be viewed as an inverse one to the Schwinger realization of Lie algebra, and suggest a procedure of deforming the so-obtained algebra. We illustrate the method through a few simple examples extending Schwinger's su(1,1)su(1,1) construction. As results, various q-deformed algebras are (re-)produced as well as their undeformed counterparts. Some extensions of the method are pointed out briefly.Comment: 14 pages, Jeonju University Report, Late

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    Notulae to the Italian native vascular flora: 2

    Get PDF
    In this contribution new data concerning the Italian distribution of native vascular flora are presented. It includes new records, exclusions, and confirmations to the Italian administrative regions for taxa in the genera Arctostaphylos, Artemisia, Buglossoides, Convolvulus, Crocus, Damasonium, Epipogium, Ficaria, Filago, Genista, Heptaptera, Heracleum, Heteropogon, Hieracium, Myosotis, Ononis, Papaver, Pilosella, Polygonum, Pulmonaria, Scorzonera, Silene, Trifolium, Vicia and Viola

    Lifetime measurements of the low-lying excited states of <sup>208</sup>Po

    Get PDF
    In this study we present the preliminary results about the lifetimes of the 2₂âș, 4₁âș states of ÂČ⁰⁞Po and the upper limit of the lifetime of the 2₁âș state. For measuring the lifetimes of the 2₁âș and 4₁âș states the Recoil Distance Doppler Shift (RDDS) method and for the lifetime of the 2₂âș state the Doppler Shift Attenuation method (DSAM) were used. The resulting absolute transition strength B(M1 ; 2₂âș → 2₁âș) ≄ 0.122(20) ÎŒNÂČ reveals the predominant isovector nature of the 2₂âș state of ÂČ⁰⁞Po

    Analgesic and Anti-Inflammatory Effects of the Novel Semicarbazide-Sensitive Amine-Oxidase Inhibitor SzV-1287 in Chronic Arthritis Models of the Mouse.

    Get PDF
    Semicarbazide-sensitive amine oxidase (SSAO) catalyses oxidative deamination of primary amines. Since there is no data about its function in pain and arthritis mechanisms, we investigated the effects of our novel SSAO inhibitor SzV-1287 in chronic mouse models of joint inflammation. Effects of SzV-1287 (20 mg/kg i.p./day) were investigated in the K/BxN serum-transfer and complete Freund's adjuvant (CFA)-evoked active immunization models compared to the reference SSAO inhibitor LJP-1207. Mechanonociception was assessed by aesthesiometry, oedema by plethysmometry, clinical severity by scoring, joint function by grid test, myeloperoxidase activity by luminescence, vascular leakage by fluorescence in vivo imaging, histopathological changes by semiquantitative evaluation, and cytokines by Luminex assay. SzV-1287 significantly inhibited hyperalgesia and oedema in both models. Plasma leakage and keratinocyte chemoattractant production in the tibiotarsal joint, but not myeloperoxidase activity was significantly reduced by SzV-1287 in K/BxN-arthritis. SzV-1287 did not influence vascular and cellular mechanisms in CFA-arthritis, but significantly decreased histopathological alterations. There was no difference in the anti-hyperalgesic and anti-inflammatory actions of SzV-1287 and LJP-1207, but only SzV-1287 decreased CFA-induced tissue damage. Unlike SzV-1287, LJP-1207 induced cartilage destruction, which was confirmed in vitro. SzV-1287 exerts potent analgesic and anti-inflammatory actions in chronic arthritis models of distinct mechanisms, without inducing cartilage damage

    Water taste and odor (T&O): Challenges, gaps and solutions from a perspective of the WaterTOP network

    Get PDF
    Aesthetic aspects of drinking water, such as Taste and Odor (T&amp;O), have significant effects on consumer perceptions and acceptability. Solving unpleasant water T&amp;O episodes in water supplies is challenging, since it requires expertise and know-how in diagnosis, evaluation of impacts and implementation of control measures. We present gaps, challenges and perspectives to advance water T&amp;O science and technology, by identifying key areas in sensory and chemical analysis, risk assessment and water treatment, as articulated by WaterTOP (COST Action CA18225), an interdisciplinary European and international network of researchers, experts, and stakeholders
    • 

    corecore