293 research outputs found
Single to Double Hump Transition in the Equilibrium Distribution Function of Relativistic Particles
We unveil a transition from single peaked to bimodal velocity distribution in
a relativistic fluid under increasing temperature, in contrast with a
non-relativistic gas, where only a monotonic broadening of the bell-shaped
distribution is observed. Such transition results from the interplay between
the raise in thermal energy and the constraint of maximum velocity imposed by
the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the
Maxwell-J\"uttner distributions, all exhibiting the same qualitative behavior.
We characterize the nature of the transition in the framework of critical
phenomena and show that it is either continuous or discontinuous, depending on
the group velocity. We analyze the transition in one, two, and three
dimensions, with special emphasis on two-dimensions, for which a possible
experiment in graphene, based on the measurement of the Johnson-Nyquist noise,
is proposed.Comment: 5 pages, 5 figure
Nonlocal observables and lightcone-averaging in relativistic thermodynamics
The unification of relativity and thermodynamics has been a subject of
considerable debate over the last 100 years. The reasons for this are twofold:
(i) Thermodynamic variables are nonlocal quantities and, thus, single out a
preferred class of hyperplanes in spacetime. (ii) There exist different,
seemingly equally plausible ways of defining heat and work in relativistic
systems. These ambiguities led, for example, to various proposals for the
Lorentz transformation law of temperature. Traditional 'isochronous'
formulations of relativistic thermodynamics are neither theoretically
satisfactory nor experimentally feasible. Here, we demonstrate how these
deficiencies can be resolved by defining thermodynamic quantities with respect
to the backward-lightcone of an observation event. This approach yields novel,
testable predictions and allows for a straightforward-extension of
thermodynamics to General Relativity. Our theoretical considerations are
illustrated through three-dimensional relativistic many-body simulations.Comment: typos in Eqs. (12) and (14) corrected, minor additions in the tex
Relativistic Brownian motion: From a microscopic binary collision model to the Langevin equation
The Langevin equation (LE) for the one-dimensional relativistic Brownian
motion is derived from a microscopic collision model. The model assumes that a
heavy point-like Brownian particle interacts with the lighter heat bath
particles via elastic hard-core collisions. First, the commonly known,
non-relativistic LE is deduced from this model, by taking into account the
non-relativistic conservation laws for momentum and kinetic energy.
Subsequently, this procedure is generalized to the relativistic case. There, it
is found that the relativistic stochastic force is still \gd-correlated
(white noise) but does \emph{no} longer correspond to a Gaussian white noise
process. Explicit results for the friction and momentum-space diffusion
coefficients are presented and discussed.Comment: v2: Eqs. (17c) and (28) corrected; v3: discussion extended, Eqs. (33)
added, thereby connection to earlier work clarified; v4: final version,
accepted for publication in Phys. Rev.
Relativistic diffusion of elementary particles with spin
We obtain a generalization of the relativistic diffusion of Schay and Dudley
for particles with spin. The diffusion equation is a classical version of an
equation for the Wigner function of an elementary particle. The elementary
particle is described by a unitary irreducible representation of the Poincare
group realized in the Hilbert space of wave functions in the momentum space.
The arbitrariness of the Wigner rotation appears as a gauge freedom of the
diffusion equation. The spin is described as a connection of a fiber bundle
over the momentum hyperbolic space (the mass-shell). Motion in an
electromagnetic field, transport equations and equilibrium states are
discussed.Comment: 21 pages,minor changes,the version published in Journ.Phys.
Deformed Algebras from Inverse Schwinger Method
We consider a problem which may be viewed as an inverse one to the Schwinger
realization of Lie algebra, and suggest a procedure of deforming the
so-obtained algebra. We illustrate the method through a few simple examples
extending Schwinger's construction. As results, various q-deformed
algebras are (re-)produced as well as their undeformed counterparts. Some
extensions of the method are pointed out briefly.Comment: 14 pages, Jeonju University Report, Late
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
Notulae to the Italian native vascular flora: 2
In this contribution new data concerning the Italian distribution of native vascular flora are presented.
It includes new records, exclusions, and confirmations to the Italian administrative regions for taxa in
the genera Arctostaphylos, Artemisia, Buglossoides, Convolvulus, Crocus, Damasonium, Epipogium, Ficaria,
Filago, Genista, Heptaptera, Heracleum, Heteropogon, Hieracium, Myosotis, Ononis, Papaver, Pilosella, Polygonum,
Pulmonaria, Scorzonera, Silene, Trifolium, Vicia and Viola
Lifetime measurements of the low-lying excited states of <sup>208</sup>Po
In this study we present the preliminary results about the lifetimes of the 2ââș, 4ââș states of ÂČâ°âžPo and the upper limit of the lifetime of the 2ââș state. For measuring the lifetimes of the 2ââș and 4ââș states the Recoil Distance Doppler Shift (RDDS) method and for the lifetime of the 2ââș state the Doppler Shift Attenuation method (DSAM) were used. The resulting absolute transition strength B(M1 ; 2ââș â 2ââș) â„ 0.122(20) ÎŒNÂČ reveals the predominant isovector nature of the 2ââș state of ÂČâ°âžPo
Analgesic and Anti-Inflammatory Effects of the Novel Semicarbazide-Sensitive Amine-Oxidase Inhibitor SzV-1287 in Chronic Arthritis Models of the Mouse.
Semicarbazide-sensitive amine oxidase (SSAO) catalyses oxidative deamination of primary amines. Since there is no data about its function in pain and arthritis mechanisms, we investigated the effects of our novel SSAO inhibitor SzV-1287 in chronic mouse models of joint inflammation. Effects of SzV-1287 (20 mg/kg i.p./day) were investigated in the K/BxN serum-transfer and complete Freund's adjuvant (CFA)-evoked active immunization models compared to the reference SSAO inhibitor LJP-1207. Mechanonociception was assessed by aesthesiometry, oedema by plethysmometry, clinical severity by scoring, joint function by grid test, myeloperoxidase activity by luminescence, vascular leakage by fluorescence in vivo imaging, histopathological changes by semiquantitative evaluation, and cytokines by Luminex assay. SzV-1287 significantly inhibited hyperalgesia and oedema in both models. Plasma leakage and keratinocyte chemoattractant production in the tibiotarsal joint, but not myeloperoxidase activity was significantly reduced by SzV-1287 in K/BxN-arthritis. SzV-1287 did not influence vascular and cellular mechanisms in CFA-arthritis, but significantly decreased histopathological alterations. There was no difference in the anti-hyperalgesic and anti-inflammatory actions of SzV-1287 and LJP-1207, but only SzV-1287 decreased CFA-induced tissue damage. Unlike SzV-1287, LJP-1207 induced cartilage destruction, which was confirmed in vitro. SzV-1287 exerts potent analgesic and anti-inflammatory actions in chronic arthritis models of distinct mechanisms, without inducing cartilage damage
Water taste and odor (T&O): Challenges, gaps and solutions from a perspective of the WaterTOP network
Aesthetic aspects of drinking water, such as Taste and Odor (T&O), have significant effects on consumer perceptions and acceptability. Solving unpleasant water T&O episodes in water supplies is challenging, since it requires expertise and know-how in diagnosis, evaluation of impacts and implementation of control measures. We present gaps, challenges and perspectives to advance water T&O science and technology, by identifying key areas in sensory and chemical analysis, risk assessment and water treatment, as articulated by WaterTOP (COST Action CA18225), an interdisciplinary European and international network of researchers, experts, and stakeholders
- âŠ