95 research outputs found

    Dust Modeling with GEOS-Chem: Evidence for Acidic Uptake on Dust Surfaces during INTEX-B

    Get PDF
    We use measurements of aerosol ion composition and size made from the DC8 aircraft during the 2006 INTEX-B airborne campaign to identify mineral dust signatures, and look for evidence for interaction of dust with acidic components. Coating of dust with sulfate or nitrate favors the role of dust particles as cloud condensation nucleii, can promote further uptake of SO2 and N2O5, can impact NOx/HNO3 partitioning, and can shift sulfate or nitrate towards larger sizes, affecting atmospheric lifetimes for both aerosol and gas components. Mineral dust had a pervasive presence on flights made during the Northern Pacific deployment of the INTEX-B mission. We use scatter plots of ion mixing ratios with Na+ and Ca(2+) to distinguish sea salt and mineral components of the aerosol distribution, respectively. Positive correlations of non-sea-salt sulfate and nitrate with calcium indicate that the dusty air stream is associated with polluted air masses. Sulfate-ammonium scatter plots indicate sulfate to be primarily in the form of (NH4)2SO4. A positive correlation between Ca(2+) and NO-, but little evidence of NH4NO3, suggests that NO3- may be associated with mineral dust surfaces. 3-d model simulations conducted with the GEOS-Chem chemical transport model indicate that transpacific transport from East Asia was principally responsible for the dust observed from the aircraft over the Pacific. We compare the aerosol component relationships in the model with those observed. Uptake of sulfate and nitrate on the dust is not yet represented in the model

    Analysis of observations of the middle atmosphere from satellites

    Get PDF
    Satellite data are being used to investigate problems in middle atmosphere chemistry and dynamics. Efforts have been focused primarily on studies to determine the quality of observed distributions of trace species and derived dynamical quantities. Those data have been used as diagnostics for model-derived constituent profiles and fields and for improving our understanding of some of the fundamental processes occurring in the middle atmosphere. Temperatures and derived winds from Nimbus 7 Limb Infrared Monitoring of the Stratosphere (LIMS) data were compared with long-time series of rawinsonde data at Invercargill, New Zealand, and Berlin, West Germany, and the results are excellent for both quantities. It was also demonstrated that more highly-derived dynamical quantities can be obtained reliably from those LIMS fields. Furthermore, both the diabatic and residual-mean circulations derived using LIMS data agree qualitatively with changes in the distribution of trace species determined independently with the Nimbus 7 SAMS and LIMS experiments. Subsequently, an examination of LIMS data at mid to high latitudes of the Southern Hemisphere has revealed a synoptic-scale, upper stratospheric instability during late autumn that is associated with the development of the stratospheric polar jet. Investigation of this phenomenon continues with Stratospheric Sounding Unit (SSU) data sets

    Measuring telomere length and telomere dynamics in evolutionary biology and ecology

    Get PDF
    Telomeres play a fundamental role in the protection of chromosomal DNA and in the regulation of cellular senescence. Recent work in human epidemiology and evolutionary ecology suggests adult telomere length (TL) may reflect past physiological stress and predict subsequent morbidity and mortality, independent of chronological age. Several different methods have been developed to measure TL, each offering its own technical challenges. The aim of this review is to provide an overview of the advantages and drawbacks of each method for researchers, with a particular focus on issues that are likely to face ecologists and evolutionary biologists collecting samples in the field or in organisms that may never have been studied in this context before. We discuss the key issues to consider and wherever possible try to provide current consensus view regarding best practice with regard to sample collection and storage, DNA extraction and storage, and the five main methods currently available to measure TL. Decisions regarding which tissues to sample, how to store them, how to extract DNA, and which TL measurement method to use cannot be prescribed, and are dependent on the biological question addressed and the constraints imposed by the study system. What is essential for future studies of telomere dynamics in evolution and ecology is that researchers publish full details of their methods and the quality control thresholds they employ

    Filling the Gaps: The Synergistic Application of Satellite Data for the Volcanic Ash Threat to Aviation

    Get PDF
    Although significant progress has been made in recent years, estimating volcanic ash concentration for the full extent of the airspace affected by volcanic ash remains a challenge. No single satellite, airborne or ground observing system currently exists which can sufficiently inform dispersion models to provide the degree of accuracy required to use them with a high degree of confidence for routing aircraft in and near volcanic ash. Toward this end, the detection and characterization of volcanic ash in the atmosphere may be substantially improved by integrating a wider array of observing systems and advancements in trajectory and dispersion modeling to help solve this problem. The qualitative aspect of this effort has advanced significantly in the past decade due to the increase of highly complementary observational and model data currently available. Satellite observations, especially when coupled with trajectory and dispersion models can provide a very accurate picture of the 3-dimensional location of ash clouds. The accurate estimate of the mass loading at various locations throughout the entire plume, however improving, remains elusive. This paper examines the capabilities of various satellite observation systems and postulates that model-based volcanic ash concentration maps and forecasts might be significantly improved if the various extant satellite capabilities are used together with independent, accurate mass loading data from other observing systems available to calibrate (tune) ash concentration retrievals from the satellite systems

    Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    Get PDF
    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results

    A51F-0123: Model Analysis of Tropospheric Aerosol Variability and Sources over the North Atlantic During NAAMES 2015-2016

    Get PDF
    The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five-year Earth-Venture Suborbital-2 Mission to characterize the plankton ecosystems and their influences on remote marine aerosols, boundary layer clouds, and their implications for climate in the North Atlantic. While marine-sourced aerosols have been shown to make important contributions to surface aerosol loading, cloud condensation nuclei and ice nuclei concentrations over remote marine and coastal regions, it is still a challenge to differentiate the marine biogenic aerosol signal from the strong influence of continental pollution outflow. We examine here the spatiotemporal variability and quantify the sources of tropospheric aerosols over the North Atlantic during the first two phases (November 2015 and May-June 2016) of NAAMES using a state-of-the-art chemical transport model (GEOS-Chem). The model is driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) from the NASA Global Modeling and Assimilation Office (GMAO). It includes sulfate-nitrate-ammonium aerosol thermodynamics coupled to ozone-NOx-hydrocarbon-aerosol chemistry, mineral dust, sea salt, elemental and organic carbon aerosols, and especially a recently implemented parameterization for the marine primary organic aerosol emission. The simulated aerosols over the North Atlantic are evaluated with available satellite (e.g., MODIS) observations of aerosol optical depths (AOD), and aircraft and ship aerosol measurements. We diagnose transport pathways for continental pollution outflow over the North Atlantic using carbon monoxide, an excellent tracer for anthropogenic pollution transport. We also conduct model perturbation experiments to quantify the relative contributions of terrestrial and oceanic sources to the aerosol loading, AOD, and their variability over the North Atlantic

    Trans-Pacific Transport of Saharan Dust to Western North America: A Case Study

    Get PDF
    The first documented case of long range transport of Saharan dust over a pathway spanning Asia and the Pacific to Western North America is described. Crustal material generated by North African dust storms during the period 28 February - 3 March 2005 reached western Canada on 13-14 March 2005 and was observed by lidar and sunphotometer in the Vancouver region and by high altitude aerosol instrumentation at Whistler Peak. Global chemical models (GEOS-CHEM and NRL NAAPS) confirm the transport pathway and suggest source attribution was simplified in this case by the distinct, and somewhat unusual, lack of dust activity over Eurasia (Gobi and Takla Makan deserts) at this time. Over western North America, the dust layer, although subsiding close to the boundary layer, did not appear to contribute to boundary layer particulate matter concentrations. Furthermore, sunphotometer observations (and associated inversion products) suggest that the dust layer had only subtle optical impact (Aerosol Optical Thickness (Tau(sub a500)) and Angstrom exponent (Alpha(sub 440-870) were 0.1 and 1.2 respectively) and was dominated by fine particulate matter (modes in aerodynamic diameter at 0.3 and 2.5microns). High Altitude observations at Whistler BC, confirm the crustal origin of the layer (rich in Ca(++) ions) and the bi-modal size distribution. Although a weak event compared to the Asian Trans-Pacific dust events of 1998 and 2001, this novel case highlights the possibility that Saharan sources may contribute episodically to the aerosol burden in western North America

    Hispanic Immigration to the United States

    Get PDF
    This chapter presents some of the exceptional characteristics of recent Hispanic immigration to the United States. In 2005, there were nearly 40 million Hispanic immigrants and descendants of Hispanic immigrants living in the U.S. The assimilation experience of this large cultural group does not seem to be following the path past immigrants to the U.S. followed. Most third generation Hispanics in the U.S. still find themselves with income and education levels below the U.S. averages. Most forecasts predict that about 60 million Hispanics and Hispanic-Americans will be living in the U.S. by 2030
    • …
    corecore