11 research outputs found

    MARS imaging for geology

    No full text
    The MARS spectral Computed Tomography (CT) system harnesses energy resolving, photon-counting detector technology that allows the extraction of material information from CT images. My contribution to the MARS team has involved developing a thorough geometric calibration method to improve the image quality of MARS imaging with an emphasis on scanning geological samples. I have studied a set of metrics for assessing the image quality in MARS spectral CT and worked on generating an image artefact database that better enables analysis and accurate tracking of the root cause of individual image artefacts. This study has been commercially translated to a standard method applied during the quality assurance and quality control process of the MARS point-of-care scanners commissioning. The MARS spectral system is non-destructive and has the potential to replace the restrictive 2D alignment and geological composition data currently available to geologists. To examine this capability, I imaged igneous rock samples from the University of Canterbury (UC), Department of Geology, to investigate crystal alignment, pore size and pore connectivity. The geological structures of interest can be less than 100 µm in size so the slightest distortion during the imaging process can have a significant impact on results. This emphasised a need to create a geometric calibration method that can enhance the spatial resolution to the maximum capability of the MARS system. Geometric calibration involves measuring accurately the actual position and orientation of each of the components within MARS scanners and incorporating these values in the MARS software. Historical geometric techniques have been based on analysing reconstructed images that are time-consuming, laborious, and are less accurate due to indirect measurement and indistinguishable compounding artefacts that are calculated from re- constructed images. I have worked on the development of an edge detection algorithm that can accurately determine the orientation and alignment of copper tracks on a custom Printed Circuit Board (PCB) line phantom, which is the foundation for all subsequent measurements of the various geometric parameters within the system. Accurate geometric calibration leads to improved image quality and resolution of the system that enables advanced diagnosis in medical imaging and achieves informative images in geology and other applications

    Thermal impact of dykes on ignimbrite and implications for fluid flow compartmentalisation in calderas

    No full text
    International audienceIgnimbrites within calderas host intrusions with hazardous and/or economically significant hydrothermal systems. The Hvítserkur ignimbrite at Breiðuvík caldera, north-eastern Iceland, is intruded by basaltic dykes. Our data show that the ignimbrite immediately adjacent to the dyke is hard, dark-coloured, recrystallised quartz, plagioclase, and alkali feldspar with a low permeability and porosity and frequent macrofractures. At 1-2 m from the dyke, the ignimbrite is hard, dominantly glassy with pervasive perlitic microfractures, has high permeability, but low porosity and frequent macrofractures. A narrow zone of pervasive unlithified clay exists 2 m from the dyke. Beyond this, the ignimbrite is soft and zeolite-rich, has low permeability, high porosity and fewer macrofractures. The dyke intrusion promoted a narrow zone of welding, fracturing and perlitisation in the ignimbrite resulting in high permeability and focussed alteration. Our study shows how intrusions and their thermal aureoles create vertical pathways for, and horizontal barriers to, geothermal fluid flow

    Thermal impact of dykes on ignimbrite and implications for fluid flow compartmentalisation in calderas

    No full text
    Ignimbrites within calderas host intrusions with hazardous and/or economically significant hydrothermal systems. The Hvítserkur ignimbrite at Breiðuvík caldera, north-eastern Iceland, is intruded by basaltic dykes. Our data show that the ignimbrite immediately adjacent to the dyke is hard, dark-coloured, recrystallised quartz, plagioclase, and alkali feldspar with a low permeability and porosity and frequent macrofractures. At 1-2 m from the dyke, the ignimbrite is hard, dominantly glassy with pervasive perlitic microfractures, has high permeability, but low porosity and frequent macrofractures. A narrow zone of pervasive unlithified clay exists 2 m from the dyke. Beyond this, the ignimbrite is soft and zeolite-rich, has low permeability, high porosity and fewer macrofractures. The dyke intrusion promoted a narrow zone of welding, fracturing and perlitisation in the ignimbrite resulting in high permeability and focussed alteration. Our study shows how intrusions and their thermal aureoles create vertical pathways for, and horizontal barriers to, geothermal fluid flow

    Assessment of metal implant induced artefacts using photon counting spectral CT

    No full text
    The aim is to perform qualitative and quantitative assessment of metal induced artefacts of small titanium biomaterials using photon counting spectral CT. The energy binning feature of some photon counting detectors enables the measured spectrum to be segmented into low, mid and high energy bins in a single exposure. In this study, solid and porous titanium implants submerged in different concentrations of calcium solution were scanned using the small animal MARS photon counting spectral scanner equipped with a polyenergetic X-ray source operated at 118 kVp. Five narrow energy bins (7-45 keV, 45-55 keV, 55-65 keV, 65-75 keV and 75-118 keV) in charge summing mode were utilised. Images were evaluated in the energy domain (spectroscopic images) as well as material domain (material segmentation and quantification). Results show that calcium solution outside titanium implants can be accurately quantified. However, there was an overestimation of calcium within the pores of the scaffold. This information is critical as it can severely limit the assessment of bone ingrowth within metal structures. The energy binning feature of the spectral scanner was exploited and a correction factor, based on calcium concentrations adjacent to and within metal structures, was used to minimise the variation. Qualitative and quantitative evaluation of bone density and morphology with and without titanium screw shows that photon counting spectral CT can assess bone-metal interface with less pronounced artefacts. Quantification of bone growth in and around the implants would help in orthopaedic applications to determine the effectiveness of implant treatment and assessment of fracture healing

    MARS pre-clinical imaging: the benefits of small pixels and good energy data

    No full text
    Images from MARS spectral CT scanners show that there is much diagnostic value from using small pixels and good energy data. MARS scanners use energy-resolving photon-counting CZT Medipix3RX detectors that measure the energy of photons on a five-point scale and with a spatial resolution of 110 microns. The energy information gives good material discrimination and quantification. The 3D reconstruction gives a voxel size of 70 microns. We present images of pre-clinical specimens, including excised atheroma, bone and joint samples, and nanoparticle contrast agents along with images from living humans. Images of excised human plaque tissue show the location and extent of lipid and calcium deposition within the artery wall. The presence of intraplaque haemorrhage, where the blood leaks into the artery wall following a rupture, has also been visualised through the detection of iron. Several clinically important bone and joint problems have been investigated including: site-specific bone mineral density, bone-metal interfaces (spectral CT reduces metal artefacts), cartilage health using ionic contrast media, gout and pseudogout crystals, and microfracture assessment using nanoparticles. Metallic nanoparticles have been investigated as a cellular marker visible in MARS images. Cell lines of different cancer types (Raji and SK-BR3) were incubated with monoclonal antibody-functionalised AuNPs (Herceptin and Rituximab). We identified and quantified the labelled AuNPs demonstrating that Herceptin-functionalised AuNPs bound to SK-BR3 breast cancer cells but not to the Raji lymphoma cells. In vivo human images show the bone microstructure. Fat, water, and calcium concentrations are quantifiable

    Medipix3RX neutron camera for ambient radiation measurements in the CMS cavern

    No full text
    We describe a CMS-Medipix3RX neutron camera developed by adapting and modifying detector readout electronics developed at the University of Canterbury. The readout electronics are part of the MARS x-ray scanner used for imaging applications [1]. The neutron cameras will be used for the precise evaluation of complex radiation fields in and around the Compact Muon Solenoid (CMS) detector on the Large Hadron Collider (LHC) at CERN. This evaluation will help to ascertain the performance of various sub-systems installed in the cavern as well as to predict their useful lifetimes. Medipix3RX detector can deliver real-time images of the flux and spectral composition of different particles, including slow and fast neutrons. In this neutron camera, slow neutrons are detected using a lithium fluoride conversion layer and fast neutrons by a polypropylene layer. These produce charged particles, which are then detected by a semiconductor sensor material, silicon. We modelled the mixed-field radiation at seven Medipix detector locations in the cavern by scoring the particle travelling through the detector location using FOCUS, a Monte-Carlo simulation tool, analysing the energy as well as their angular distributions of neutrons from the result of simulations.A good agreement was observed between the average flux predicted by standard FLUKA methods and those obtained from FOCUS output data integrated over time. Also, the response function of the Medipix detectors was modelled and simulated for different thicknesses of the neutron conversion layer. An algorithm was developed for track reconstruction and recognition using cluster analysis techniques. This labels and determines the density of clusters formed by groups of particles. The CMS-Medipix detectors with their conversion layers were calibrated in the CERN neutron facility and installed in the CMS cavern at the beginning of 2018. This paper discusses the calibration of the detector installation and presents early results of radiation measurements from 2018 run
    corecore