30 research outputs found

    Foundation and Development of Local Trimble User Groups: Perspectives from the Beginning

    Get PDF
    Trimble Navigation was one of the original contractors building military grade GPS receivers and has been a dominant manufacturer in the civilian market. Two Trimble user groups have been formed. By participating in GPS user groups, members become more aware of GPS capabilities and opportunities, meet people with similar interests and needs, expand business opportunities, and provide Trimble with valuable information needed to engineer better GPS equipment

    Using lidar remote sensing and support vector machines to classify fire disturbance legacies in a Florida oak scrub landscape

    Get PDF
    Background/Question/Methods

Ecologists have long emphasized the reciprocal interactions between spatial pattern and ecological processes in the creation of landscape mosaics. While an enormous amount of recent research has focused on the quantification of spatial patterns, efforts to infer process from pattern have been hindered by the presence of multi-scale, often confounding, drivers of pattern in many landscapes. At the mesoscale, Holling’s extended keystone hypothesis posits that spatially contagious disturbances such as fire are the dominant pattern-generating processes. To test this hypothesis, we used fire history data and discrete, small-footprint lidar remote sensing acquired over a 22 sq. km landscape of oak scrub in the Kennedy Space Center/Merritt Island National Wildlife Refuge area on the east-central coast of Florida. We binned the lidar return data into 1 m vertical height intervals for each 5 m x 5 m horizontal cell. Since community structure tends to recover by 7 years post-fire, we tested for significant differences between recently-burned (< 7 years) and unburned (≥ 7 years) patches with multivariate analysis of variance. To predict the burn status of each cell, we then used distribution-free, nonlinear support vector machine (SVM) classifiers, which have proven to be highly accurate for complex pattern recognition problems.

Results/Conclusions 

We detected statistically significant differences in vegetation structure between burned and unburned patches for all of the dominant land cover types (upland non-forested, upland forested, wetland hardwood forest, and non-forested wetlands) in the study area. Initially, we obtained a predicted error rate of approximately 34% from the SVM classifier; by averaging the binned lidar data over a moving window of increasing size, however, we achieved substantial reductions in the predicted error rate for the SVM classifier. The optimal window size of 100 m x 100 m yielded a predicted misclassification rate of approximately 3%, an order of magnitude lower than the error rate obtained on the same data using a logistic regression classifier. These results suggest that, as predicted by the extended keystone hypothesis, fire disturbance is a dominant pattern-generating process at the patch scale in this oak scrub landscape. Furthermore, these results indicate that it is possible to use vertical vegetation structure, as represented by the binned lidar data, to predict burn status with a high level of accuracy. While our study employed a simple binary classification scheme, future research will focus on using SVM regression techniques to predict burn status with finer-grained classes of time since fire

    Development and implementation of a scrub habitat compensation plan for Kennedy Space Center

    Get PDF
    Kennedy Space Center (KSC), located on Merritt Island on the east coast of central Florida, is one of three remaining major populations of the Florida Scrub Jay (Aphelocoma coerulescens coerulescens), listed as threatened by the U.S. Fish and Wildlife Service (USFWS) since 1987. Construction of new facilities by the National Aeronautics and Space Administration (NASA) on KSC over the next five years has the potential to impact up to 193 ac (78.1 ha) of Scrub Jay habitat. Under an early consultation process with the Endangered Species Office of the USFWS, NASA agreed to a compensation plan for loss of Scrub Jay habitat. The compensation plan required NASA to restore or create scrub on KSC at a 2:1 ratio for that lost. The compensation plan emphasized restoration of scrub habitat that is of marginal or declining suitability to Scrub Jays because it has remained unburned. Although prescribed burning has been conducted by the USFWS Merritt Island National Wildlife Refuge (MINWR) for more than ten years, significant areas of scrub remain unburned because they have been excluded from fire management units or because landscape fragmentation and a period of fire suppression allowed scrub to reach heights and diameters that are fire resistant. For such areas, mechanical cutting followed by prescribed burning was recommended for restoration. A second part of the restoration plan is an experimental study of scrub reestablishment (i.e., creation) on abandoned, well drained agricultural sites by planting scrub oaks and other scrub plants. The compensation plan identified 260 ac (105 ha) of scrub restoration in four areas and a 40 ac (16 ha) scrub creation site. Monitoring of restoration sites required under the plan included: establishing permanent vegetation sample transects before treatment and resampling annually for ten years after treatment, and color banding Scrub Jays to determine territories prior to treatment followed by monitoring reproductive success and survival for ten years after treatment. Monitoring scrub creation sites included determining survival of planted material for five years and establishing permanent transects to follow vegetation development for ten years after planting. Scrub Jay monitoring of creation sites is incorporated with that of adjacent restoration sites

    Using Lidar-Derived Vegetation Profiles to Predict Time since Fire in an Oak Scrub Landscape in East-Central Florida

    Get PDF
    Disturbance plays a fundamental role in determining the vertical structure of vegetation in many terrestrial ecosystems, and knowledge of disturbance histories is vital for developing effective management and restoration plans. In this study, we investigated the potential of using vertical vegetation profiles derived from discrete-return lidar to predict time since fire (TSF) in a landscape of oak scrub in east-central Florida. We predicted that fire influences vegetation structure at the mesoscale (i.e., spatial scales of tens of meters to kilometers). To evaluate this prediction, we binned lidar returns into 1m vertical by 5 x 5 m horizontal cells and averaged the resulting profiles over a range of horizontal window sizes (0 to 500 m on a side). We then performed a series of resampling tests to compare the performance of support vector machine (SVM), k-nearest neighbor (k-NN), logistic regression, and linear discriminant analysis (LDA) classifiers and to estimate the amount of training data necessary to achieve satisfactory performance. Our results indicate that: (1) the SVMs perform significantly better than the other classifiers, (2) SVM classifiers may require relatively small training data sets, and (3) the highest classification accuracies occur with averaging over windows representing sizes in the mesoscale range

    The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Ecosystems

    Get PDF
    The combined effects of repeated fires, climate, and landscape features (e.g., edges) need greater focus in fire ecology studies, which usually emphasize characteristics of the most recent fire and not fire history. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells that represented potential territories because frequent fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities between states varied annually as functions of environmental covariates. Covariates included vegetative type, edges, precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presenceabsence of fire covariate, but also fire history covariates: time since the previous fire, the maximum fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Measuring territory quality states and environmental covariates each year combined with multistate modeling provided a useful empirical approach to quantify the effects of repeated fire in combinations with environmental variables on transition probabilities that drive management strategies and ecosystem change

    The Effects of Vegetative Type, Edges, Fire History, Rainfall and Management in Fire-Maintained Habitat

    Get PDF
    The combined effects of fire history, climate, and landscape features (e.g., edges) on habitat specialists need greater focus in fire ecology studies, which usually only emphasize characteristics of the most recent fire. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights, which are dynamic because of frequent fires. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells (that represented potential territories) because fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities vary between states as functions of environmental covariates. Covariates included vegetative type, edges (e.g., roads, forests), precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presence/absence of fire covariate, but also fire history covariates: time since the previous fire, the longest fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Edges reduced the effectiveness of fires in setting degraded scrub and flatwoods into earlier successional states making mechanical cutting an important tool to compliment frequent prescribed fires

    Monitoring Direct Effects of Delta, Atlas, and Titan Launches from Cape Canaveral Air Station

    Get PDF
    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects that could arise from direct impacts of the launch exhaust (e.g., blast, heat), deposition of exhaust products of the solid rocket motors (hydrogen chloride, aluminum oxide), or other effects such as noise. Here we: 1) review previous reports, environmental assessments, and environmental impact statements for Delta, Atlas, and Titan vehicles and pad areas to clarity the magnitude of potential impacts; 2) summarize observed effects of 15 Delta, 22 Atlas, and 8 Titan launches; and 3) develop a spatial database of the distribution of effects from individual launches and cumulative effects of launches. The review of previous studies indicated that impacts from these launches can occur from the launch exhaust heat, deposition of exhaust products from the solid rocket motors, and noise. The principal effluents from solid rocket motors are hydrogen chloride (HCl), aluminum oxide (Al2O3), water (H2O), hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2). The exhaust plume interacts with the launch complex structure and water deluge system to generate a launch cloud. Fall out or rain out of material from this cloud can produce localized effects from acid or particulate deposition. Delta, Atlas, and Titan launch vehicles differ in the number and size of solid rocket boosters and in the amount of deluge water used. All are smaller and use less water than the Space Shuttle. Acid deposition can cause damage to plants and animals exposed to it, acidify surface water and soil, and cause long-term changes to community composition and structure from repeated exposure. The magnitude of these effects depends on the intensity and frequency of acid deposition

    Multistate modeling of habitat dynamics: factors affecting Florida scrub transition probabilities

    Get PDF
    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida\u27s Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics

    Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida

    Get PDF
    The Space Shuttle Program was one of NASAs first major undertakings to fall under the environmental impact analysis and documentation requirements of the National Environmental Policy Act of 1969 (NEPA). Space Shuttle Program activities at John F. Kennedy Space Center (KSC) and the associated Merritt Island National Wildlife Refuge (MINWR) contributed directly and indirectly to both negative and positive ecological trends in the region through the long-term, stable expenditure of resources over the 40 year program life cycle. These expenditures provided support to regional growth and development in conjunction with other sources that altered land use patterns, eliminated and modified habitats, and contributed to cultural eutrophication of the Indian River Lagoon. At KSC, most Space Shuttle Program related actions were conducted in previously developed facilities and industrial areas with the exception of the construction of the shuttle landing facility (SLF) and the space station processing facility (SSPF). Launch and operations impacts were minimal as a result of the low annual launch rate. The majority of concerns identified during the NEPA process such as potential weather modification, acid rain off site, and local climate change did not occur. Launch impacts from deposition of HCl and particulates were assimilated as a result of the high buffering capacity of the system and low launch and loading rates. Metals deposition from exhaust deposition did not display acute impacts. Sub-lethal effects are being investigated as part of the Resource Conservation and Recovery Act (RCRA) regulatory process. Major positive Space Shuttle Program effects were derived from the adequate resources available at the Center to implement the numerous environmental laws and regulations designed to enhance the quality of the environment and minimize impacts from human activities. This included reduced discharges of domestic and industrial wastewater, creation of stormwater management systems, remediation of past contamination sites, implementation of hazardous waste management systems, and creation of a culture of sustainability. Working with partners such as the USFWS and the St Johns River Water Management District (SJRWMD), wetlands and scrub restoration and management initiatives were implemented to enhance fish and wildlife populations at the Center. KSC remains the single largest preserve on the east coast of Florida in part due to NASAs commitment to stewardship. Ongoing Ecological Program projects are directed at development of information and knowledge to address future KSC management questions including the transition to a joint government and commercial launch facility, enhanced habitat management requirements for wetlands and scrub, potential impacts of emerging contaminants, and adaptation to climate change including projected sea level rise over the next 50-75 years

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces
    corecore