676 research outputs found

    Association between an AMH promoter polymorphism and serum AMH levels in PCOS patients

    Get PDF
    STUDY QUESTION: Do polymorphisms in the anti-Müllerian hormone (AMH) promoter have an effect on AMH levels in patients with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER: We have identified a novel AMH promoter polymorphism rs10406324 that is associated with lower serum AMH levels and is suggested to play a role in the mechanism of regulation of AMH gene expression in women. WHAT IS KNOWN ALREADY: Follicle number is positively correlated with serum AMH levels, reflected by elevated AMH levels in women with PCOS. In addition, it is suggested that AMH production per follicle is higher in women with PCOS than in normo-ovulatory women, implying an altered regulation of AMH in PCOS. STUDY DESIGN, SIZE, DURATION: A discovery cohort of 655 PCOS women of Northern European ancestry and both an internal and external validation PCOS cohort (n = 458 and n = 321, respectively) were included in this study. Summary-level data of an AMH genome-wide association study meta-analysis including 7049 normo-ovulatory women was included as a control cohort. A genetic approach was taken through association analysis and in silico analysis of the associated variants in the AMH promoter. In vitro analysis was performed to investigate the functional mechanisms. PARTICIPANTS/MATERIALS, SETTING, METHODS: All common two-allelic single-nucleotide polymorphisms (SNPs) in the region Chr19:2 245 353–2 250 827 bp (Build 37) were selected for the analysis. Linear regression analyses were performed to determine the association between SNPs in the AMH promoter region and serum AMH levels. For the in silico analysis, the webtools ‘HaploReg’ v4.1 for ENCODE prediction weight matrices and ‘atSNP’ were used. In vitro analysis was performed using KK1 cells, a mouse granulosa cell line and COV434 cells, a human granulosa tumor cell line. Cells were transfected with the reference or the variant human AMH promoter reporter construct together with several transcription factors (TFs). Dual-Glo(®) Luciferase Assay was performed to measure the luciferase activity. MAIN RESULTS AND THE ROLE OF CHANCE: Polymorphism rs10406324 was significantly associated with serum AMH levels in all three PCOS cohorts. Carriers of the minor allele G had significantly lower log-transformed serum AMH levels compared to non-carriers (P = 8.58 × 10(−8), P = 1.35 × 10(−3) and P = 1.24 × 10(−3), respectively). This result was validated in a subsequent meta-analysis (P = 3.24 × 10(−12)). Interestingly, rs10406324 was not associated with follicle count, nor with other clinical traits. Also, in normo-ovulatory women, the minor allele of this variant was associated with lower serum AMH levels (P = 1.04 × 10(−5)). These findings suggest that polymorphism rs10406324 plays a role in the regulation of AMH expression, irrespective of clinical background. In silico analysis suggested a decreased binding affinity of the TFs steroidogenenic factor 1, estrogen-related receptor alpha and glucocorticoid receptor to the minor allele G variant, however in vitro analysis did not show a difference in promoter activity between the A and G allele. LIMITATIONS, REASONS FOR CAUTION: Functional analyses were performed in a mouse and a human granulosa cell line using an AMH promoter reporter construct. This may have limited assessment of the impact of the polymorphism on higher order chromatin structures. Human granulosa cells generated from induced pluripotent stem cells, combined with gene editing, may provide a method to elucidate the exact mechanism behind the decrease in serum AMH levels in carriers of the −210 G allele. We acknowledge that the lack of follicle number in the external validation and the control cohort is a limitation of the paper. Although we observed that the association between rs10406324 and AMH levels was independent of follicle number in our discovery and internal validation PCOS cohorts, we cannot fully rule out that the observed effects on serum AMH levels are, in part, caused by differences in follicle number. WIDER IMPLICATIONS OF THE FINDINGS: These results suggest that variations in serum AMH levels are not only caused by differences in follicle number but also by genetic factors. Therefore, the genetic context should be taken into consideration when assessing serum AMH levels in women. This may have clinical consequences when serum AMH levels are used as a marker for the polycystic ovarian morphology phenotype. STUDY FUNDING/COMPETING INTEREST(S): No external funding was used. J.S.E.L. has received consultancy fees from the following companies: Ferring, Roche Diagnostics and Ansh Labs and has received travel reimbursement from Ferring. J.A.V. has received royalties from AMH assays, paid to the institute/lab with no personal financial gain. The other authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A

    Effect of Testosterone on Insulin Stimulated IRS1 Ser Phosphorylation in Primary Rat Myotubes—A Potential Model for PCOS-Related Insulin Resistance

    Get PDF
    Polycystic ovary syndrome (PCOS) is characterized by a hyperandrogenic state and frequently develops skeletal muscle insulin resistance. We determined whether testosterone adversely affects insulin action by increasing serine phosphorylation of IRS-1(636/639) in differentiated rat skeletal muscle myotubes. The phosphorylation of Akt, mTOR, and S6K, downstream targets of the PI3-kinase-IRS-1 complex were also studied.Primary differentiated rat skeletal muscle myotubes were subjected to insulin for 30 min after 16-hour pre-exposure to either low (20 ng/ml) or high (200 ng/ml) doses of testosterone. Protein phosphorylation of IRS-1 Ser(636/639), Akt Ser(473), mTOR-Ser(2448), and S6K-Thr(389) were measured by Western blot with signal intensity measured by immunofluorescence.Cells exposed to 100 nM of insulin had increased IRS-1 Ser(636/639) and Akt Ser(473) phosphorylation. Cells pre-exposed to low-dose testosterone had significantly increased insulin-induced mTOR-Ser(2448) and S6K-Thr(389) phosphorylation (p<0.05), and further increased insulin-induced IRS-1 Ser(636/639) phosphorylation (p = 0.042) compared to control cells. High-dose testosterone pre-exposure attenuated the insulin-induced mTOR-Ser(2448) and S6K-Thr(389) phosphorylation.The data demonstrated an interaction between testosterone and insulin on phosphorylation of intracellular signaling proteins, and suggests a link between a hyperandrogenic, hyperinsulinemic environment and the development of insulin resistance involving serine phosphorylation of IRS-1 Ser(636/639). These results may guide further investigations of potential mechanisms of PCOS-related insulin resistance

    Androgen Excess Produces Systemic Oxidative Stress and Predisposes to β-Cell Failure in Female Mice

    Get PDF
    In women, excess production of the male hormone, testosterone (T), is accompanied by insulin resistance. However, hyperandrogenemia is also associated with β-cell dysfunction and type 2 diabetes raising the possibility that androgen receptor (AR) activation predisposes to β-cell failure. Here, we tested the hypothesis that excess AR activation produces systemic oxidative stress thereby contributing to β-cell failure. We used normal female mice (CF) and mice with androgen resistance by testicular feminization (Tfm). These mice were exposed to androgen excess and a β-cell stress induced by streptozotocin (STZ). We find that following exposure to T, or the selective AR-agonist dehydrotestosterone (DHT), CF mice challenged with STZ, which are normally protected, are prone to β-cell failure and insulin-deficient diabetes. Conversely, T-induced predisposition to β-cell failure is abolished in Tfm mice. We do not observe any proapoptotic effect of DHT alone or in the presence of H2O2 in cultured mouse and human islets. However, we observe that exposure of CF mice to T or DHT provokes systemic oxidative stress, which is eliminated in Tfm mice. This work has significance for hyperandrogenic women; excess activation of AR by testosterone may provoke systemic oxidative stress. In the presence of a prior β-cell stress, this may predispose to β-cell failure

    Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan

    Get PDF
    Polycystic ovary syndrome (PCOS) is of clinical and public health importance as it is very common, affecting up to one in five women of reproductive age. It has significant and diverse clinical implications including reproductive (infertility, hyperandrogenism, hirsutism), metabolic (insulin resistance, impaired glucose tolerance, type 2 diabetes mellitus, adverse cardiovascular risk profiles) and psychological features (increased anxiety, depression and worsened quality of life). Polycystic ovary syndrome is a heterogeneous condition and, as such, clinical and research agendas are broad and involve many disciplines. The phenotype varies widely depending on life stage, genotype, ethnicity and environmental factors including lifestyle and bodyweight. Importantly, PCOS has unique interactions with the ever increasing obesity prevalence worldwide as obesity-induced insulin resistance significantly exacerbates all the features of PCOS. Furthermore, it has clinical implications across the lifespan and is relevant to related family members with an increased risk for metabolic conditions reported in first-degree relatives. Therapy should focus on both the short and long-term reproductive, metabolic and psychological features. Given the aetiological role of insulin resistance and the impact of obesity on both hyperinsulinaemia and hyperandrogenism, multidisciplinary lifestyle improvement aimed at normalising insulin resistance, improving androgen status and aiding weight management is recognised as a crucial initial treatment strategy. Modest weight loss of 5% to 10% of initial body weight has been demonstrated to improve many of the features of PCOS. Management should focus on support, education, addressing psychological factors and strongly emphasising healthy lifestyle with targeted medical therapy as required. Monitoring and management of long-term metabolic complications is also an important part of routine clinical care. Comprehensive evidence-based guidelines are needed to aid early diagnosis, appropriate investigation, regular screening and treatment of this common condition. Whilst reproductive features of PCOS are well recognised and are covered here, this review focuses primarily on the less appreciated cardiometabolic and psychological features of PCOS

    Large effects on body mass index and insulin resistance of fat mass and obesity associated gene (FTO) variants in patients with polycystic ovary syndrome (PCOS)

    Get PDF
    BACKGROUND: The polycystic ovary syndrome (PCOS), a common endocrine disorder in women of child-bearing age, mainly characterised by chronic anovulation and hyperandrogenism, is often associated with insulin resistance (IR) and obesity. Its etiology and the role of IR and obesity in PCOS are not fully understood. We examined the influence of validated genetic variants conferring susceptibility to obesity and/or type 2 diabetes mellitus (T2DM) on metabolic and PCOS-specific traits in patients with PCOS. METHODS: We conducted an association study in 386 patients with PCOS (defined by the Rotterdam-criteria) using single nucleotide polymorphisms (SNPs) in or in proximity to the fat mass and obesity associated gene (FTO), insulin-induced gene-2 (INSIG2), transcription factor 7-like 2 gene (TCF7L2) and melanocortin 4 receptor gene (MC4R). To compare the effect of FTO obesity risk alleles on BMI in patients with PCOS to unselected females of the same age range we genotyped 1,971 females from the population-based KORA-S4 study (Kooperative Gesundheitsforschung im Raum Augsburg, Survey 4). RESULTS: The FTO risk allele was associated with IR traits and measures of increased body weight. In addition, the TCF7L2 SNP was associated with body weight traits. For the SNPs in the vicinity of INSIG2 and MC4R and for the other examined phenotypes there was no evidence for an association. In PCOS the observed per risk allele effect of FTO intron 1 SNP rs9939609 on BMI was +1.56 kg/m2, whereas it was +0.46 kg/m2 in females of the same age range from the general population as shown previously. CONCLUSION: The stronger effect on body weight of the FTO SNP in PCOS might well have implications for the etiology of the disease

    Evaluating compliance to a low glycaemic index (GI) diet in women with polycystic ovary syndrome (PCOS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A low Glycaemic Index (GI) diet may decrease some long-term health risks in Polycystic Ovary Syndrome (PCOS) such as endometrial cancer. This study was performed to assess compliance to a low GI diet in women with PCOS. Food diaries prospectively collected over 6 months from women on a low GI diet or healthy eating diet were analysed retrospectively. The women were recruited for a pilot randomised control trial investigating whether a low GI diet decreased the risk of Endometrial Cancer. Nine women with PCOS completed 33 food diaries (17 from women on a low GI diet and 16 from women on a healthy eating diet) recording 3023 food items (low GI group:n = 1457; healthy eating group:n = 1566). Data was analysed using Foster-Powell international values inserted into an SPSS database as no scientifically valid established nutrition software was found. The main outcome measures were mean item GI and Glyacemic Load (GL), mean meal GL, percentage high GI foods and mean weight loss.</p> <p>Findings</p> <p>Women allocated the low GI diet had a statistically significant lower GI of food items (33.67 vs 36.91, p < 0.05), lower percentage of high GI foods (4.3% vs 12.1%, p < 0.05) and lower GL of food items and meals.</p> <p>Conclusion</p> <p>Women with PCOS on a low GI diet consumed food items with a significantly lower mean GI and GL compared to the healthy eating diet group. Longer term compliance needs evaluation in subsequent studies to ascertain that this translates to reduced long term health risks.</p> <p>Trial Registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN86420258">ISRCTN86420258</a></p

    Lipidomic analysis of plasma samples from women with polycystic ovary syndrome

    Get PDF
    Abstract Polycystic ovary syndrome (PCOS) is a common disorder affecting between 5 and 18 % of females of reproductive age and can be diagnosed based on a combination of clinical, ultrasound and biochemical features, none of which on its own is diagnostic. A lipidomic approach using liquid chromatography coupled with accurate mass high-resolution mass-spectrometry (LCHRMS) was used to investigate if there were any differences in plasma lipidomic profiles in women with PCOS compared with control women at different stages of menstrual cycle. Plasma samples from 40 women with PCOS and 40 controls aged between 18 and 40 years were analysed in combination with multivariate statistical analyses. Multivariate data analysis (LASSO regression and OPLSDA) of the sample lipidomics datasets showed a weak prediction model for PCOS versus control samples from the follicular and mid-cycle phases of the menstrual cycle, but a stronger model (specificity 85 % and sensitivity 95 %) for PCOS versus the luteal phase menstrual cycle controls. The PCOS vs luteal phase model showed increased levels of plasma triglycerides and sphingomyelins and decreased levels of lysophosphatidylcholines and phosphatidylethanolamines in PCOS women compared with controls. Lipid biomarkers of PCOS were tentatively identified which may be useful in distinguishing PCOS from controls especially when performed during the menstrual cycle luteal phase

    State of the Art Review: Emerging Therapies: The Use of Insulin Sensitizers in the Treatment of Adolescents with Polycystic Ovary Syndrome (PCOS)

    Get PDF
    PCOS, a heterogeneous disorder characterized by cystic ovarian morphology, androgen excess, and/or irregular periods, emerges during or shortly after puberty. Peri- and post-pubertal obesity, insulin resistance and consequent hyperinsulinemia are highly prevalent co-morbidities of PCOS and promote an ongoing state of excess androgen. Given the relationship of insulin to androgen excess, reduction of insulin secretion and/or improvement of its action at target tissues offer the possibility of improving the physical stigmata of androgen excess by correction of the reproductive dysfunction and preventing metabolic derangements from becoming entrenched. While lifestyle changes that concentrate on behavioral, dietary and exercise regimens should be considered as first line therapy for weight reduction and normalization of insulin levels in adolescents with PCOS, several therapeutic options are available and in wide use, including oral contraceptives, metformin, thiazolidenediones and spironolactone. Overwhelmingly, the data on the safety and efficacy of these medications derive from the adult PCOS literature. Despite the paucity of randomized control trials to adequately evaluate these modalities in adolescents, their use, particularly that of metformin, has gained popularity in the pediatric endocrine community. In this article, we present an overview of the use of insulin sensitizing medications in PCOS and review both the adult and (where available) adolescent literature, focusing specifically on the use of metformin in both mono- and combination therapy
    corecore