4,163 research outputs found

    Higgs Couplings at the End of 2012

    Get PDF
    Performing a fit to all publicly available data, we analyze the extent to which the latest results from the LHC and Tevatron constrain the couplings of the Higgs boson-like state at ~ 125 GeV. To this end we assume that only Standard Model (SM) particles appear in the Higgs decays, but tree-level Higgs couplings to the up-quarks, down-quarks and vector bosons, relative to the SM are free parameters. We also assume that the leptonic couplings relative to the SM are the same as for the down-quark, and a custodial symmetry for the V=W,Z couplings. In the simplest approach, the effective Higgs couplings to gluons and photons are computed in terms of the previous parameters. This approach is also applied to Two-Higgs-Doublet Models of Type I and Type II. However, we also explore the possibility that the net Higgs to gluon-gluon and gamma-gamma couplings have extra loop contributions coming from Beyond-the-Standard Model physics. We find that the SM p-value ~ 0.5 is more than 2 sigma away from fits in which: a) there is some non-SM contribution to the gamma-gamma coupling of the Higgs; or b) the sign of the top quark coupling to the Higgs is opposite that of the W coupling. In both these cases p-values ~ 0.9 can be achieved. Since option b) is difficult to realize in realistic models, it would seem that new physics contributions to the effective couplings of the Higgs are preferred.Comment: 25 pages, 11 figures; v2: minor corrections, references added; v3: acknowledgement adde

    The Origin of Fe II Emission in AGN

    Get PDF
    We used a very large set of models of broad emission line (BEL) clouds in AGN to investigate the formation of the observed Fe II emission lines. We show that photoionized BEL clouds cannot produce both the observed shape and observed equivalent width of the 2200-2800A Fe II UV bump unless there is considerable velocity structure corresponding to a microturbulent velocity parameter v_turb > 100 km/s for the LOC models used here. This could be either microturbulence in gas that is confined by some phenomenon such as MHD waves, or a velocity shear such as in the various models of winds flowing off the surfaces of accretion disks. The alternative way that we can find to simultaneously match both the observed shape and equivalent width of the Fe II UV bump is for the Fe II emission to be the result of collisional excitation in a warm, dense gas. Such gas would emit very few lines other than Fe II. However, since the collisionally excited gas would constitute yet another component in an already complicated picture of the BELR, we prefer the model involving turbulence. In either model, the strength of Fe II emission relative to the emission lines of other ions such as Mg II depends as much on other parameters (either v_turb or the surface area of the collisionally excited gas) as it does on the iron abundance. Therefore, the measurement of the iron abundance from the FeII emission in quasars becomes a more difficult problem.Comment: 23 pages. Accepted by Ap

    Radar Detection of High Concentrations of Ice Particles - Methodology and Preliminary Flight Test Results

    Get PDF
    High Ice Water Content (HIWC) has been identified as a primary causal factor in numerous engine events over the past two decades. Previous attempts to develop a remote detection process utilizing modern commercial radars have failed to produce reliable results. This paper discusses the reasons for previous failures and describes a new technique that has shown very encouraging accuracy and range performance without the need for any hardware modifications to industrys current radar designs. The performance of this new process was evaluated during the joint NASA/FAA HIWC RADAR II Flight Campaign in August of 2018. Results from that evaluation are discussed, along with the potential for commercial application, and development of minimum operational performance standards for a future commercial radar product

    Chemical and dynamical processes in the mesospheric emissive layer. First results of stereoscopic observations

    Get PDF
    [1] The mesospheric emissive layer is an efficient tracer of the dynamical processes propagating in the atmosphere at that level. CCD images in the near infrared taken from the ground at slant angles often reveal the existence of wavy fields. A series of such images has been transformed, using matrix operations, producing a downward satellite-type view that covers a circular area of radius ∼1000 km at the altitude of the layer. The Fourier characteristics of the wave system are measured using a Morlet-type wavelet generator function with horizontal wavelengths of mostly ∼20–40 km and 100–150 km and temporal periods of ∼15–30 min. An oxygen-hydrogen model is used to evaluate the response of the emissive layer to a progressive density wave. The altitude of the layer is modulated with an amplitude of ∼0.8–1.8 km when a density wave propagates vertically. The layer thickness is slightly modulated and is equal to ∼7 km. Stereoscopic pairs of photographs taken simultaneously on 8–9 September 2000 at the Château-Renard and Pic du Midi observatories are used to obtain surface maps of the emission layer barycenter altitude. A stereocorrelation method suitable for low contrast objects without discrete contours is employed. Preliminary results for areas ∼50 × 50 km2 are presented. The surface maps of the layer barycenter altitude depict the existence of waves. They show the same wavy structure and compare favorably with the maps showing the emission intensity

    Radial Fredholm perturbation in the two-dimensional Ising model and gap-exponent relation

    Full text link
    We consider concentric circular defects in the two-dimensional Ising model, which are distributed according to a generalized Fredholm sequence, i. e. at exponentially increasing radii. This type of aperiodicity does not change the bulk critical behaviour but introduces a marginal extended perturbation. The critical exponent of the local magnetization is obtained through finite-size scaling, using a corner transfer matrix approach in the extreme anisotropic limit. It varies continuously with the amplitude of the modulation and is closely related to the magnetic exponent of the radial Hilhorst-van Leeuwen model. Through a conformal mapping of the system onto a strip, the gap-exponent relation is shown to remain valid for such an aperiodic defect.Comment: 12 pages, TeX file + 4 figures, epsf neede
    • …
    corecore