1,090 research outputs found

    Theory of the Little-Parks effect in spin-triplet superconductors

    Full text link
    The celebrated Little-Parks effect in mesoscopic superconducting rings has recently gained great attention due to its potential to probe half-quantum vortices in spin-triplet superconductors. However, despite the large number of works reporting anomalous Little-Parks measurements attributed to unconventional superconductivity, the general signatures of spin-triplet pairing in the Little-Parks effect have not yet been systematically investigated. Here we use Ginzburg-Landau theory to study the Little-Parks effect in a spin-triplet superconducting ring that supports half-quantum vortices; we calculate the field-induced Little-Parks oscillations of both the critical temperature itself and the residual resistance resulting from thermal vortex tunneling below the critical temperature. We observe two separate critical temperatures with a single-spin superconducting state in between and find that, due to the existence of half-quantum vortices, each minimum in the upper critical temperature splits into two minima for the lower critical temperature. From a rigorous calculation of the residual resistance, we confirm that these two minima in the lower critical temperature translate into two maxima in the residual resistance below and establish the general conditions under which the two maxima can be practically resolved. In particular, we identify a fundamental trade-off between sharpening each maximum and keeping the overall magnitude of the resistance large. Our results will guide experimental efforts in designing mesoscopic ring geometries for probing half-quantum vortices in spin-triplet candidate materials on the device scale

    Parity Mixed Doublets in A = 36 Nuclei

    Full text link
    The γ\gamma-circular polarizations (PγP_{\gamma}) and asymmetries (AγA_{\gamma}) of the parity forbidden M1 + E2 γ\gamma-decays: 36Cl∗(Jπ=2−;T=1;Ex=1.95^{36}Cl^{\ast} (J^{\pi} = 2^{-}; T = 1; E_{x} = 1.95 MeV) →\rightarrow 36Cl(Jπ=2+;T=1;g.s.)^{36}Cl (J^{\pi} = 2^{+}; T = 1; g.s.) and 36Ar∗(Jπ=2−;T=0;Ex=4.97^{36}Ar^{\ast} (J^{\pi} = 2^{-}; T = 0; E_{x} = 4.97 MeV) →\rightarrow 36Ar∗(Jπ=2+;T=0;Ex=1.97^{36}Ar^{\ast} (J^{\pi} = 2^{+}; T = 0; E_{x} = 1.97 MeV) are investigated theoretically. We use the recently proposed Warburton-Becker-Brown shell-model interaction. For the weak forces we discuss comparatively different weak interaction models based on different assumptions for evaluating the weak meson-hadron coupling constants. The results determine a range of PγP_{\gamma} values from which we find the most probable values: PγP_{\gamma} = 1.1⋅10−41.1 \cdot 10^{-4} for 36Cl^{36}Cl and PγP_{\gamma} = 3.5⋅10−43.5 \cdot 10^{-4} for 36Ar^{36}Ar.Comment: RevTeX, 17 pages; to appear in Phys. Rev.

    Nonlinear PDEs for Fredholm determinants arising from string equations

    Get PDF
    String equations related to 2D gravity seem to provide, quite naturally and systematically, integrable kernels, in the sense of Its-Izergin-Korepin and Slavnov. Some of these kernels (besides the "classical" examples of Airy and Pearcey) have already appeared in random matrix theory and they have a natural Wronskian structure, given by one of the operators in the string relation [L±,Q±]=±1[L^\pm,Q^\pm] = \pm 1, namely L±L^\pm. The kernels are intimately related to wave functions for Gel'fand-Dickey reductions of the KP hierarchy. The Fredholm determinants of these kernels also satisfy Virasoro constraints leading to PDEs for their log derivatives, and these PDEs depend explicitly on the solutions of Painlev\'e-like systems of ODEs equivalent to the relevant string relations. We give some examples coming from critical phenomena in random matrix theory (higher order Tracy-Widom distributions) and statistical mechanics (Ising models).Comment: Accepted for publication on the AMS Contemporary Mathematics Series, 36 page
    • …
    corecore