103 research outputs found

    Understanding the Methyl-TROSY effect over a wide range of magnetic fields

    Full text link
    The use of relaxation interference in the methyl Transverse Relaxation-Optimized SpectroscopY (TROSY) experiment has opened new avenues for the study of large proteins and protein assemblies in nuclear magnetic resonance. So far, the theoretical description of the methyl-TROSY experiment has been limited to the slow-tumbling approximation, which is correct for large proteins on high field spectrometers. In a recent paper, favorable relaxation interference was observed in the methyl groups of a small protein at a magnetic field as low as 0.33 T, well outside the slow-tumbling regime. Here, we present a model to describe relaxation interference in methyl groups over a broad range of magnetic fields, not limited to the slow-tumbling regime. We predict that the type of multiple-quantum transitions that show favorable relaxation properties change with the magnetic field. Under the condition of fast methyl-group rotation, methyl-TROSY experiments can be recorded over the entire range of magnetic fields from a fraction of 1 T up to 100 T

    De Novo

    Full text link
    The crystal structure of form 4 of the drug 4-[4-(2-adamantylcarbamoyl)-5-tert-butyl-pyrazol-1-yl]benzoic acid is determined using a protocol for NMR powder crystallography at natural isotopic abundance combining solid-state 1H NMR spectroscopy, crystal structure prediction, and density functional theory chemical shift calculations. This is the first example of NMR crystal structure determination for a molecular compound of previously unknown structure, and at 422 g/mol this is the largest compound to which this method has been applied so far

    La dynamique quantique à N corps de la diffusion de spin nucléaire

    No full text
    Since its introduction by Bloembergen in 1949, nuclear spin diffusion has been a topic of significant interest in magnetic resonance. Spin diffusion, which can be defined as the transfer of spin polarisation induced by the dipolar interaction, is a ubiquitous transport mechanism in solids. Experimental observations of spin diffusion contain structural information. However, the many-body nature of the problem makes it difficult to describe from first principles. The central goal of this thesis is to obtain a quantitative description of the spin diffusion phenomenon from first-principles, through the development of suitable models of the underlying many-body dynamics. To that end we first consider an extension of an existing approach that relies on a master equation to describe the polarisations, for the case of proton-driven carbon-13 spin diffusion (PDSD). Second, a novel approach is introduced for the simulation of the time evolution of selected observables for large strongly coupled nuclear spin systems, using low-order correlations in Liouville space (LCL). Following the introduction of this new simulation method, Liouville-space reduction in solids is analysed in more detail, in order to identify the conditions under which the LCL approximation is valid. Finally, using the LCL model, simulations of proton spin diffusion (PSD) and PDSD are performed, directly from crystal geometry and with no adjustable parameters, and are found to be in excellent agreement with experimental measurements for polycrystalline organic solids.Depuis 1949, date à laquelle Bloembergen en introduisit le concept, la diffusion de spin nucléaire suscite un vif intérêt en résonance magnétique. La diffusion de spin, qui peut être définie comme le transfert de polarisation de spin induit par l’interaction dipolaire, est un mécanisme omniprésent dans les solides. Les mesures expérimentales de ce phénomène contiennent des informations sur la structure du système étudié. La diffusion de spin est cependant un problème quantique à N corps, ce qui rend sa description ab initio relativement difficile. L’objectif principal de cette thèse est d’obtenir une description quantitative et ab initio de la diffusion de spin, en modélisant de manière adéquate la dynamique à N corps sous-jacente. Tout d’abord, nous exploitons une approche existante, reposant sur l’utilisation d’une équation maître pour les polarisations, dans le cas de la diffusion de spin entre carbones permise par les protons (PDSD). Ensuite, nous introduisons une méthode permettant de simuler l’évolution temporelle d’un ensemble d’observables pour un système de spins nucléaires fortement couplés, en utilisant les corrélations de petit ordre dans l’espace de Liouville (LCL). Le modèle LCL fournit une description précise du transfert de polarisation pour les systèmes polycristallins soumis à la rotation à l’angle magique. Après avoir décrit le modèle, nous analysons plus en détail la réduction de l’espace de Liouville pour les solides, afin d’identifier les conditions dans lesquelles l’approximation LCL est valide. Enfin, nous effectuons des simulations de la diffusion de spin entre pro- tons (PSD) et entre carbones (PDSD), à partir de la structure des cristaux étudiés et sans aucun paramètre libre, et nous constatons pour des solides organiques polycristallins que leur accord avec les mesures expérimentales est excellent

    A master-equation approach to the description of proton-driven spin diffusion from crystal geometry using simulated zero-quantum lineshapes

    No full text
    Measurements of proton-driven carbon-13 spin diffusion (PDSD) by NMR spectroscopy are a central component of structural analyses of biomolecules in the solid-state. However, the quantitative link between experimental PDSD data and structural information is difficult to make. Here we observe that a master-equation approach can be used to model full PDSD dynamics accurately in polycrystalline (13)C-labelled L-histidine center dot HCl center dot H(2)O under magic-angle spinning. In the master-equation approach, PDSD rates and effective dipolar couplings are related by a function of the carbon-carbon zero-quantum lineshapes; we find that numerical simulations of the zero-quantum lineshapes are sufficiently accurate so as to allow the calculation of PDSD rates that are in good agreement with the measured rates, directly from crystal geometry and with no adjustable parameters. Finally, using carbon-carbon internuclear distances we illustrate the potential of the master-equation approach for structural studies. Generalisation of these results to proton-driven carbon-13 spin diffusion in more complex molecular systems is readily envisaged

    Acceleration of 3D DOSY NMR by Spatial Encoding of the Chemical Shift

    No full text
    International audienc

    La dynamique quantique à N corps de la diffusion de spin nucléaire

    No full text
    Depuis 1949, date à laquelle Bloembergen en introduisit le concept, la diffusion de spin nucléaire suscite un vif intérêt en résonance magnétique. La diffusion de spin, qui peut être définie comme le transfert de polarisation de spin induit par l interaction dipolaire, est un mécanisme omniprésent dans les solides. Les mesures expérimentales de ce phénomène contiennent des informations sur la structure du système étudié. La diffusion de spin est cependant un problème quantique à N corps, ce qui rend sa description ab initio relativement difficile. L objectif principal de cette thèse est d obtenir une description quantitative et ab initio de la diffusion de spin, en modélisant de manière adéquate la dynamique à N corps sous-jacente. Tout d abord, nous exploitons une approche existante, reposant sur l utilisation d une équation maître pour les polarisations, dans le cas de la diffusion de spin entre carbones permise par les protons (PDSD). Ensuite, nous introduisons une méthode permettant de simuler l évolution temporelle d un ensemble d observables pour un système de spins nucléaires fortement couplés, en utilisant les corrélations de petit ordre dans l espace de Liouville (LCL). Le modèle LCL fournit une description précise du transfert de polarisation pour les systèmes polycristallins soumis à la rotation à l angle magique. Après avoir décrit le modèle, nous analysons plus en détail la réduction de l espace de Liouville pour les solides, afin d identifier les conditions dans lesquelles l approximation LCL est valide. Enfin, nous effectuons des simulations de la diffusion de spin entre pro- tons (PSD) et entre carbones (PDSD), à partir de la structure des cristaux étudiés et sans aucun paramètre libre, et nous constatons pour des solides organiques polycristallins que leur accord avec les mesures expérimentales est excellent.Since its introduction by Bloembergen in 1949, nuclear spin diffusion has been a topic of significant interest in magnetic resonance. Spin diffusion, which can be defined as the transfer of spin polarisation induced by the dipolar interaction, is a ubiquitous transport mechanism in solids. Experimental observations of spin diffusion contain structural information. However, the many-body nature of the problem makes it difficult to describe from first principles. The central goal of this thesis is to obtain a quantitative description of the spin diffusion phenomenon from first-principles, through the development of suitable models of the underlying many-body dynamics. To that end we first consider an extension of an existing approach that relies on a master equation to describe the polarisations, for the case of proton-driven carbon-13 spin diffusion (PDSD). Second, a novel approach is introduced for the simulation of the time evolution of selected observables for large strongly coupled nuclear spin systems, using low-order correlations in Liouville space (LCL). Following the introduction of this new simulation method, Liouville-space reduction in solids is analysed in more detail, in order to identify the conditions under which the LCL approximation is valid. Finally, using the LCL model, simulations of proton spin diffusion (PSD) and PDSD are performed, directly from crystal geometry and with no adjustable parameters, and are found to be in excellent agreement with experimental measurements for polycrystalline organic solids.LYON-ENS Sciences (693872304) / SudocSudocFranceF
    corecore