665 research outputs found
Targeting lentiviral vectors to antigen-specific immunoglobulins
Gene transfer into B cells by lentivectors can provide an alternative approach to managing B lymphocyte malignancies and autoreactive B cell-mediated autoimmune diseases. These pathogenic B cell Populations can be distinguished by their surface expression of monospecific immunoglobulin. Development of a novel vector system to deliver genes to these specific B cells could improve the safety and efficacy of gene therapy. We have developed an efficient rnethod to target lentivectors to monospecific immunoglobulin-expressing cells in vitro and hi vivo. We were able to incorporate a model antigen CD20 and a fusogenic protein derived from the Sindbis virus as two distinct molecules into the lentiviral Surface. This engineered vector could specifically bind to cells expressing Surface immunoglobulin recognizing CD20 (αCD20), resulting in efficient transduction of target cells in a cognate antigen-dependent manner in vitro, and in vivo in a xenografted tumor model. Tumor suppression was observed in vivo, using the engineered lentivector to deliver a suicide gene to a xenografted tumor expressing αCD20. These results show the feasibility of engineering lentivectors to target immunoglobulin-specific cells to deliver a therapeutic effect. Such targeting lentivectors also Could potentially be used to genetically mark antigen-specific B cells in vivo to study their B cell biology
Clinically relevant concentrations of lidocaine and ropivacaine inhibit TNFα-induced invasion of lung adenocarcinoma cells in vitro by blocking the activation of Akt and focal adhesion kinase
BACKGROUND Matrix-metalloproteinases (MMP) and cancer cell invasion are crucial for solid tumour metastasis. Important signalling events triggered by inflammatory cytokines, such as tumour necrosis factor α (TNFα), include Src-kinase-dependent activation of Akt and focal adhesion kinase (FAK) and phosphorylation of caveolin-1. Based on previous studies where we demonstrated amide-type local anaesthetics block TNFα-induced Src activation in malignant cells, we hypothesized that local anaesthetics might also inhibit the activation and/or phosphorylation of Akt, FAK and caveolin-1, thus attenuating MMP release and invasion of malignant cells. METHODS NCI-H838 lung adenocarcinoma cells were incubated with ropivacaine or lidocaine (1 nM-100 µM) in absence/presence of TNFα (20 ng ml(-1)) for 20 min or 4 h, respectively. Activation/phosphorylation of Akt, FAK and caveolin-1 were evaluated by Western blot, and MMP-9 secretion was determined by enzyme-linked immunosorbent assay. Tumour cell migration (electrical wound-healing assay) and invasion were also assessed. RESULTS Ropivacaine (1 nM-100 μM) and lidocaine (1-100 µM) significantly reduced TNFα-induced activation/phosphorylation of Akt, FAK and caveolin-1 in NCI-H838 cells. MMP-9 secretion triggered by TNFα was significantly attenuated by both lidocaine and ropivacaine (half-maximal inhibitory concentration [IC50]=3.29×10(-6) M for lidocaine; IC50=1.52×10(-10) M for ropivacaine). The TNFα-induced increase in invasion was completely blocked by both lidocaine (10 µM) and ropivacaine (1 µM). CONCLUSIONS At clinically relevant concentrations both ropivacaine and lidocaine blocked tumour cell invasion and MMP-9 secretion by attenuating Src-dependent inflammatory signalling events. Although determined entirely in vitro, these findings provide significant insight into the potential mechanism by which local anaesthetics might diminish metastasi
Joining Together to Build More: The New England Software Carpentry Library Consortium
In 2017 a group of academic library and information technology staff from institutions across New England piloted a process of joining The Carpentries, an organization developed to train researchers in essential computing skills and practices for automating and improving their handling of data, as a consortium. The New England Software Carpentry Library Consortium (NESCLiC) shared a gold-level tier membership to become a Carpentries member organization. NESCLiC members attended a Software Carpentry workshop together and then participated in instructor training as a cohort, collaborating on learning the material, practicing, and beginning to host and teach workshops as a group.
This article describes both the successes and challenges of forming this new consortium, suggests good practices for those who might wish to form similar collaborations, and discusses the future of this program and other efforts to help researchers improve their computing and data handling skills
Transgenic expression of human glial cell line-derived neurotrophic factor (hGDNF) from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson's disease
Standard integration-proficient lentiviral vectors (IPLVs) are effective at much lower doses than other vector systems and have shown promise for gene therapy of Parkinson's disease (PD). Their main drawback is the risk of insertional mutagenesis. The novel biosafety-enhanced integration-deficient lentiviral vectors (IDLVs) may offer a significant enhancement in biosafety, but have not been previously tested in a model of a major disease. We have assessed biosafety and transduction efficiency of IDLVs in a rat model of PD, using IPLVs as a reference. Genomic insertion of lentivectors injected into the lesioned striatum was studied by linear amplification-mediated polymerase chain reaction (PCR), followed by deep sequencing and insertion site analysis, demonstrating lack of significant IDLV integration. Reporter gene expression studies showed efficient, long-lived, and transcriptionally targeted expression from IDLVs injected ahead of lesioning in the rat striatum, although at somewhat lower expression levels than from IPLVs. Transgenic human glial cell line-derived neurotrophic factor (hGDNF) expression from IDLVs was used for a long-term investigation of lentivector-mediated, transcriptionally targeted neuroprotection in this PD rat model. Vectors were injected before striatal lesioning, and the results showed improvements in nigral dopaminergic neuron survival and behavioral tests regardless of lentiviral integration proficiency, although they confirmed lower expression levels of hGDNF from IDLVs. These data demonstrate the effectiveness of IDLVs in a model of a major disease and indicate that these vectors could provide long-term PD treatment at low dose, combining efficacy and biosafety for targeted central nervous system applications
Lentiviral gene transfer into the dorsal root ganglion of adult rats
<p>Abstract</p> <p>Background</p> <p>Lentivector-mediated gene delivery into the dorsal root ganglion (DRG) is a promising method for exploring pain pathophysiology and for genetic treatment of chronic neuropathic pain. In this study, a series of modified lentivector particles with different cellular promoters, envelope glycoproteins, and viral accessory proteins were generated to evaluate the requirements for efficient transduction into neuronal cells <it>in vitro </it>and adult rat DRG <it>in vivo</it>.</p> <p>Results</p> <p><it>In vitro</it>, lentivectors expressing enhanced green fluorescent protein (EGFP) under control of the human elongation factor 1α (EF1α) promoter and pseudotyped with the conventional vesicular stomatitis virus G protein (VSV-G) envelope exhibited the best performance in the transfer of EGFP into an immortalized DRG sensory neuron cell line at low multiplicities of infection (MOIs), and into primary cultured DRG neurons at higher MOIs. <it>In vivo</it>, injection of either first or second-generation EF1α-EGFP lentivectors directly into adult rat DRGs led to transduction rates of 19 ± 9% and 20 ± 8% EGFP-positive DRG neurons, respectively, detected at 4 weeks post injection. Transduced cells included a full range of neuronal phenotypes, including myelinated neurons as well as both non-peptidergic and peptidergic nociceptive unmyelinated neurons.</p> <p>Conclusion</p> <p>VSV-G pseudotyped lentivectors containing the human elongation factor 1α (EF1α)-EGFP expression cassette demonstrated relatively efficient transduction to sensory neurons following direct injection into the DRG. These results clearly show the potential of lentivectors as a viable system for delivering target genes into DRGs to explore basic mechanisms of neuropathic pain, with the potential for future clinical use in treating chronic pain.</p
Construct validity of the Actiwatch-2 for assessing movement in people with profound intellectual and multiple disabilities
Background: Valid measures to assess either small or assisted performed movements of people with profound intellectual and multiple disabilities (PIMD) are required. We analysed the construct validity of the Actiwatch-2 to assess movement in people with PIMD. Method: Twenty-two persons with PIMD were video recorded while wearing an Actiwatch-2. We used 15s-partial-interval recording to record upper body movement, body position and activity situation. Multilevel analyses were used to evaluate if the Actiwatch-2, based on produced counts, could detect changes in these factors. Results: The presence versus absence of upper body movement and an activity situation in which participants were involved versus not involved resulted in significantly higher counts, with a large variety in predicted counts between participants. No relationship between body position and counts was found. Conclusions: The Actiwatch-2 seems able to assess obvious upper body movement in people with PIMD, and whether there is involvement in an activity situation
A Rapid and Economic In-House DNA Purification Method Using Glass Syringe Filters
Background
Purity, yield, speed and cost are important considerations in plasmid purification, but it is difficult to achieve all of these at the same time. Currently, there are many protocols and kits for DNA purification, however none maximize all four considerations.
Methodology/Principal Findings
We now describe a fast, efficient and economic in-house protocol for plasmid preparation using glass syringe filters. Plasmid yield and quality as determined by enzyme digestion and transfection efficiency were equivalent to the expensive commercial kits. Importantly, the time required for purification was much less than that required using a commercial kit.
Conclusions/Significance
This method provides DNA yield and quality similar to that obtained with commercial kits, but is more rapid and less costly.This research was supported by Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe
Moving fast but going slow: coordination challenges for trials of COVID-19 post-exposure prophylaxis
An unprecedented volume of research has been generated in response to the COVID-19 pandemic. However, there are risks of inefficient duplication and of important work being impeded if efforts are not synchronized. Excessive reliance on observational studies, which can be more rapidly conducted but are inevitably subject to measured and unmeasured confounders, can foil efforts to conduct rigorous randomized trials. These challenges are illustrated by recent global efforts to conduct clinical trials of post-exposure prophylaxis (PEP) as a strategy for preventing COVID-19. Innovative strategies are needed to help overcome these issues, including increasing communication between the Data Safety and Monitoring Committees (DSMCs) of similar trials. It is important to reinforce the primacy of high-quality trials in generating unbiased answers to pressing prevention and treatment questions about COVID-19
- …