29 research outputs found

    Characterisation, Modelling and Simulation of Flexible Polyurethane Foam

    Get PDF
    Flexible polyurethane foam is an open-celled polymeric material that exhibits strain rate and temperature effects. It has found various applications in areas including the packaging, medical, sports, aerospace and aeronautical industries. Polyurethane foam is ubiquitous in seating applications and finds particular use in specialised wheelchair seating where customised seating solutions are required which can provide proper comfort and support without the risk of developing pressure ulcers. Proper seating design is critical for users if this problem is to be avoided, but a lack of quantitative knowledge of this material’s behaviour has limited its effectiveness. The objectives of the work presented here are twofold. Firstly to characterise the behaviour of the materials and secondly to develop a validated numerical model which can be used to increase understanding of in-service behaviour. Three commonly used foams having different densities and viscoelastic properties were subjected to compression in a uni-axial test machine fitted with a custom-built temperature chamber. The results of these tests were analysed and are presented to aid in the characterisation of these materials. The effects on the stiffness of foam of different additives, densities, strain rates and temperatures were noted. A material model was developed to simulate indentation, in which compression and shear were the predominant modes of deformation. The results from the uni-axial characterisation tests were employed to determine material constants for Ogden’s constitutive model for compressible materials. Simple shear tests were also conducted with a custom-built dual lap shear tester and material constants were then determined for this mode of deformation. A curve-fit was developed which was a compromise between both modes of deformation to provide increased material model robustness. To validate the accuracy of the developed model, uni-axial indentation of standard polyurethane seating foam was then modelled using Finite Element (FE) code. Results show a high degree of accuracy

    Testing, Modelling and Validation of Numerical Model Capable of Predicting Stress Fields Throughout Polyurethane Foam

    Get PDF
    Wheelchair seating systems are specialised for a number of reasons as users can have impaired mobility, which increases the possibility of pressure build up. These areas of high pressure frequently occur in the trunk region under the bony prominences known as the Ischial Tuberosities (IT), pressure ulcers may occur consequently. Polyurethane foam has been in use for some time in wheelchair seating systems as it exhibits good pressure relieving capabilities in most cases. However, little quantitative research has gone into foamed polymers, in comparison with conventional elastomeric materials. This lack of knowledge can ultimately lead to more time being spent in fitting, increased possibility of refitting and potentially an increase in trunk region pressures leading to the development of ulcers. Test results were used to accurately validate a Visco-Hyperfoam material model. Accurately simulating an indentation procedure using FE software verified the validation of the material model

    3D Engineering with Prototyping

    Get PDF

    Prediction of Compressive Creep Bhaviour in Flexible Polyurethane Foam Over Long Time Scales and at Elevated Temperatures

    Get PDF
    Compressive creep gradually affects the structural performance of flexible polymeric foam material over extended time periods. When designing components, it is often difficult to account for long-term creep, as accurate creep data over long time periods or at high temperatures is often unavailable. This is mainly due to the lengthy testing times and/or inadequate high temperature testing facilities. This issue can be resolved by conducting a range of short-term creep tests and applying accurate prediction methods to the results. Short-term creep testing was conducted on viscoelastic polyurethane foam, a material commonly used in seating and bedding systems. Tests were conducted over a range of temperatures, providing the necessary results to allow for the generation of predictions of long-term creep behaviour using time-temperature superposition. Additional predictions were generated, using the William Landel Ferry time-temperature empirical relations, for material performance at temperatures above and below the reference temperature range. Further tests validated the results generated from these theoretical predictions

    The Implementation of a Visco-hyperelastic Numerical Material Model for Simulating the Behaviour of Polymer Foam Materials

    Get PDF
    Polyurethane foam has been in use for some time in wheelchair seating systems as it offers good pressure relieving capabilities in most cases. However, little characterisation work has gone into seating foam materials by comparison with conventional elastomeric materials. Accurate material models could allow better prediction of foam in-service behaviour, which could potentially improve seating design practises. The objective of this work was to develop an approach for the validation of hyperelastic and viscoelastic material model parameters used to simulate polyurethane foam behaviour. Material parameters were identified from relevant test procedures and implemented in a Finite Element simulation of an ISO foam indentation procedure. Physical test results were compared to results predicted using the identified material parameters. Simulations suggest a good overall agreement between test and model results

    An Energy-based Approach to Assess and Predict Erosive Airfoil Defouling

    Get PDF
    A dynamic indentation experiment is presented for assessment of the adhesive behavior of a range of coatings in erosive defouling of commercial aircraft engines using CO2 dry-ice. A series of experiments is presented in which particles made from a reference material (polyoxymethylene – POM) and from CO2 dry-ice are made to impact compressor airfoils under a range of impact angle and velocity conditions. The airfoils investigated are coated with an indicator material (PTFE), which is typically used to visualise the defouling effect in large scale compressor defouling experiments. In addition, fouled compressor airfoils taken from service and coated with a fouling typically found in low-pressure compressor stages are investigated. The energy required for the reference particles (POM) to create a defouling effect for the different coatings is determined by an experimental evaluation of their coefficient of restitution. This energy requirement is assumed to be fouling specific. Empirical defouling functions are presented. They correlate the defouling effect for both particle materials under various impact conditions. The empirical correlations are developed into a simulation procedure to predict particle impact erosion and energy dissipation of coated surfaces in numerical indentation simulations

    A VALIDATION STUDY FOR A NEW EROSION MODEL TO PREDICT EROSIVE AIRFOIL DEFOULING

    Get PDF
    A new defouling erosion model for Lagrangian particle tracking is used to predict defouling of amor-phous, heterogeneous coatings such as those typically found in aircraft compressors. The main problem description, the mathematical formulation and the underpinning experiment of the model are presented in a previous communication by the authors. In this work, the Ansys CFX implementation of the model is described and an experiment is presented for the validation of the model. Air flows laden with a number of dry-ice particles are observed in an optically accessible stream channel containing a flat plate target. The defouling process of these particles is recorded with HSCs and the main parameters, such as indentation size in fouling layers, are processed and compared to corresponding numerical results. The model parameters considered are particle impact velocity and angle as well as particle and fouling material. Typical coatings which are relevant to commercial aircraft defouling processes are investi-gated. The target plate angle and the air velocity are varied and dry-ice particles of random size and shape are injected into the flow. The experiment is set up in a wind-tunnel test-rig and all recordings are made using two HSCs, a digital camera and Prandtl probe measurement. Experimental and numerical defouling results show good overall agreement for steep target angles but significant deviations for low target angles. Potential improvement to the defouling erosion model is discussed based on these results. The model as presented is used in large-scale compressor defouling simulations in the development process of on-wing aircraft maintenance system

    How do parents manage irritability, challenging behavior, non-compliance and anxiety in children with Autism Spectrum Disorders? A meta-synthesis

    Get PDF
    Although there is increasing research interest in the parenting of children with ASD, at present, little is known about everyday strategies used to manage problem behaviour. We conducted a meta-synthesis to explore what strategies parents use to manage irritability, non-compliance, challenging behaviour and anxiety in their children with ASD. Approaches included: (1) accommodating the child; (2) modifying the environment; (3) providing structure, routine and occupation; (4) supervision and monitoring; (5) managing non-compliance with everyday tasks; (6) responding to problem behaviour; (7) managing distress; (8) maintaining safety and (9) analysing and planning. Results suggest complex parenting demands in children with ASD and problem behaviour. Findings will inform the development of a new measure to quantify parenting strategies relevant to ASD

    Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): a randomised, open-label, phase 3 superiority trial

    Get PDF
    Background: Intensive antiplatelet therapy with three agents might be more effective than guideline treatment for preventing recurrent events in patients with acute cerebral ischaemia. We aimed to compare the safety and efficacy of intensive antiplatelet therapy (combined aspirin, clopidogrel, and dipyridamole) with that of guideline-based antiplatelet therapy. Methods: We did an international, prospective, randomised, open-label, blinded-endpoint trial in adult participants with ischaemic stroke or transient ischaemic attack (TIA) within 48 h of onset. Participants were assigned in a 1:1 ratio using computer randomisation to receive loading doses and then 30 days of intensive antiplatelet therapy (combined aspirin 75 mg, clopidogrel 75 mg, and dipyridamole 200 mg twice daily) or guideline-based therapy (comprising either clopidogrel alone or combined aspirin and dipyridamole). Randomisation was stratified by country and index event, and minimised with prognostic baseline factors, medication use, time to randomisation, stroke-related factors, and thrombolysis. The ordinal primary outcome was the combined incidence and severity of any recurrent stroke (ischaemic or haemorrhagic; assessed using the modified Rankin Scale) or TIA within 90 days, as assessed by central telephone follow-up with masking to treatment assignment, and analysed by intention to treat. This trial is registered with the ISRCTN registry, number ISRCTN47823388. Findings: 3096 participants (1556 in the intensive antiplatelet therapy group, 1540 in the guideline antiplatelet therapy group) were recruited from 106 hospitals in four countries between April 7, 2009, and March 18, 2016. The trial was stopped early on the recommendation of the data monitoring committee. The incidence and severity of recurrent stroke or TIA did not differ between intensive and guideline therapy (93 [6%] participants vs 105 [7%]; adjusted common odds ratio [cOR] 0·90, 95% CI 0·67–1·20, p=0·47). By contrast, intensive antiplatelet therapy was associated with more, and more severe, bleeding (adjusted cOR 2·54, 95% CI 2·05–3·16, p<0·0001). Interpretation: Among patients with recent cerebral ischaemia, intensive antiplatelet therapy did not reduce the incidence and severity of recurrent stroke or TIA, but did significantly increase the risk of major bleeding. Triple antiplatelet therapy should not be used in routine clinical practice

    Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): a randomised, open-label, phase 3 superiority trial

    Get PDF
    Background: Intensive antiplatelet therapy with three agents might be more effective than guideline treatment for preventing recurrent events in patients with acute cerebral ischaemia. We aimed to compare the safety and efficacy of intensive antiplatelet therapy (combined aspirin, clopidogrel, and dipyridamole) with that of guideline-based antiplatelet therapy.Methods: We did an international, prospective, randomised, open-label, blinded-endpoint trial in adult participants with ischaemic stroke or transient ischaemic attack (TIA) within 48 h of onset. Participants were assigned in a 1:1 ratio using computer randomisation to receive loading doses and then 30 days of intensive antiplatelet therapy (combined aspirin 75 mg, clopidogrel 75 mg, and dipyridamole 200 mg twice daily) or guideline-based therapy (comprising either clopidogrel alone or combined aspirin and dipyridamole). Randomisation was stratified by country and index event, and minimised with prognostic baseline factors, medication use, time to randomisation, stroke-related factors, and thrombolysis. The ordinal primary outcome was the combined incidence and severity of any recurrent stroke (ischaemic or haemorrhagic; assessed using the modified Rankin Scale) or TIA within 90 days, as assessed by central telephone follow-up with masking to treatment assignment, and analysed by intention to treat. This trial is registered with the ISRCTN registry, number ISRCTN47823388.Findings: 3096 participants (1556 in the intensive antiplatelet therapy group, 1540 in the guideline antiplatelet therapy group) were recruited from 106 hospitals in four countries between April 7, 2009, and March 18, 2016. The trial was stopped early on the recommendation of the data monitoring committee. The incidence and severity of recurrent stroke or TIA did not differ between intensive and guideline therapy (93 [6%] participants vs 105 [7%]; adjusted common odds ratio [cOR] 0·90, 95% CI 0·67–1·20, p=0·47). By contrast, intensive antiplatelet therapy was associated with more, and more severe, bleeding (adjusted cOR 2·54, 95% CI 2·05–3·16,
    corecore