46 research outputs found

    Intraoperative ketorolac in high-risk breast cancer patients : A prospective, randomized, placebo-controlled clinical trial

    Get PDF
    Funding: This work is financed by grants received by PF, in the name of his institution: the Anticancer Fund (no grant number) (www.anticancerfund.org); the Belgian Society of Anaesthesia and Resuscitation (no grant number) (www.sarb.be); the Fondation Saint-Luc (no grant number) (www.uclouvain.be); the Commission du Patrimoine of the Université catholique de Louvain, St-Luc Hospital (exceptional grant, no number) (www.uclouvain.be). None of the funders had any role in the study design, data collection and analysis, decision to publish or preparation of the manuscript except the scientific advise of GB, scientific director of the Anticancer Fund.Peer reviewedPublisher PD

    Paclitaxel plus Eftilagimod Alpha, a Soluble LAG-3 Protein, in Metastatic, HR<sup>+</sup> Breast Cancer:Results from AIPAC, a Randomized, Placebo Controlled Phase IIb Trial

    Get PDF
    Purpose: Eftilagimod alpha (efti), a soluble lymphocyte activation gene (LAG-3) protein and MHC class II agonist, enhances innate and adaptive immunity. Active Immunotherapy PAClitaxel (AIPAC) evaluated safety and efficacy of efti plus paclitaxel in patients with predominantly endocrine-resistant, hormone receptor–positive, HER2-negative metastatic breast cancer (ET-resistant HR+ HER2– MBC). Patients and Methods: Women with HR+ HER2– MBC were randomized 1:1 to weekly intravenous paclitaxel (80 mg/m2) and subcutaneous efti (30 mg) or placebo every 2 weeks for six 4-week cycles, then monthly subcutaneous efti (30 mg) or placebo maintenance. Primary endpoint was progression-free survival (PFS) by blinded independent central review. Secondary endpoints included overall survival (OS), safety/tolerability, pharmacokinetics/pharmacodynamics, and quality of life. Exploratory endpoints included cellular biomarkers. Results: 114 patients received efti and 112 patients received placebo. Median age was 60 years (91.6% visceral disease, 84.1% ET-resistant, 44.2% with previous CDK4/6 inhibitor treatment). Median PFS at 7.3 months was similar for efti and placebo. Median OS was not significantly improved for efti (20.4 vs. 17.5 months; HR, 0.88; P = 0.197) but became significant for predefined exploratory subgroups. EORTC QLQC30-B23 global health status was sustained for efti but deteriorated for placebo. Efti increased absolute lymphocyte, monocyte and secondary target cell (CD4, CD8) counts, plasma IFNg and CXCL10 levels. Conclusions: Although the primary endpoint, PFS, was not met, AIPAC confirmed expected pharmacodynamic effects and demonstrated excellent safety profile for efti. OS was not significantly improved globally (2.9-month difference), but was significantly improved in exploratory biomarker subgroups, warranting further studies to clarify efti’s role in patients with ET-resistant HER2– MBC.</p

    Paclitaxel plus Eftilagimod Alpha, a Soluble LAG-3 Protein, in Metastatic, HR<sup>+</sup> Breast Cancer:Results from AIPAC, a Randomized, Placebo Controlled Phase IIb Trial

    Get PDF
    Purpose: Eftilagimod alpha (efti), a soluble lymphocyte activation gene (LAG-3) protein and MHC class II agonist, enhances innate and adaptive immunity. Active Immunotherapy PAClitaxel (AIPAC) evaluated safety and efficacy of efti plus paclitaxel in patients with predominantly endocrine-resistant, hormone receptor–positive, HER2-negative metastatic breast cancer (ET-resistant HR+ HER2– MBC). Patients and Methods: Women with HR+ HER2– MBC were randomized 1:1 to weekly intravenous paclitaxel (80 mg/m2) and subcutaneous efti (30 mg) or placebo every 2 weeks for six 4-week cycles, then monthly subcutaneous efti (30 mg) or placebo maintenance. Primary endpoint was progression-free survival (PFS) by blinded independent central review. Secondary endpoints included overall survival (OS), safety/tolerability, pharmacokinetics/pharmacodynamics, and quality of life. Exploratory endpoints included cellular biomarkers. Results: 114 patients received efti and 112 patients received placebo. Median age was 60 years (91.6% visceral disease, 84.1% ET-resistant, 44.2% with previous CDK4/6 inhibitor treatment). Median PFS at 7.3 months was similar for efti and placebo. Median OS was not significantly improved for efti (20.4 vs. 17.5 months; HR, 0.88; P = 0.197) but became significant for predefined exploratory subgroups. EORTC QLQC30-B23 global health status was sustained for efti but deteriorated for placebo. Efti increased absolute lymphocyte, monocyte and secondary target cell (CD4, CD8) counts, plasma IFNg and CXCL10 levels. Conclusions: Although the primary endpoint, PFS, was not met, AIPAC confirmed expected pharmacodynamic effects and demonstrated excellent safety profile for efti. OS was not significantly improved globally (2.9-month difference), but was significantly improved in exploratory biomarker subgroups, warranting further studies to clarify efti’s role in patients with ET-resistant HER2– MBC.</p

    Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer

    Get PDF
    BACKGROUND: Patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer who have disease progression after therapy with multiple HER2-targeted agents have limited treatment options. Tucatinib is an investigational, oral, highly selective inhibitor of the HER2 tyrosine kinase. METHODS: We randomly assigned patients with HER2-positive metastatic breast cancer previously treated with trastuzumab, pertuzumab, and trastuzumab emtansine, who had or did not have brain metastases, to receive either tucatinib or placebo, in combination with trastuzumab and capecitabine. The primary end point was progression-free survival among the first 480 patients who underwent randomization. Secondary end points, assessed in the total population (612 patients), included overall survival, progression-free survival among patients with brain metastases, confirmed objective response rate, and safety. RESULTS: Progression-free survival at 1 year was 33.1% in the tucatinib-combination group and 12.3% in the placebo-combination group (hazard ratio for disease progression or death, 0.54; 95% confidence interval [CI], 0.42 to 0.71; P<0.001), and the median duration of progression-free survival was 7.8 months and 5.6 months, respectively. Overall survival at 2 years was 44.9% in the tucatinib-combination group and 26.6% in the placebo-combination group (hazard ratio for death, 0.66; 95% CI, 0.50 to 0.88; P = 0.005), and the median overall survival was 21.9 months and 17.4 months, respectively. Among the patients with brain metastases, progression-free survival at 1 year was 24.9% in the tucatinib-combination group and 0% in the placebo-combination group (hazard ratio, 0.48; 95% CI, 0.34 to 0.69; P<0.001), and the median progression-free survival was 7.6 months and 5.4 months, respectively. Common adverse events in the tucatinib group included diarrhea, palmar-plantar erythrodysesthesia syndrome, nausea, fatigue, and vomiting. Diarrhea and elevated aminotransferase levels of grade 3 or higher were more common in the tucatinib-combination group than in the placebo-combination group. CONCLUSIONS: In heavily pretreated patients with HER2-positive metastatic breast cancer, including those with brain metastases, adding tucatinib to trastuzumab and capecitabine resulted in better progression-free survival and overall survival outcomes than adding placebo; the risks of diarrhea and elevated aminotransferase levels were higher with tucatinib. (Funded by Seattle Genetics; HER2CLIMB ClinicalTrials.gov number, NCT02614794.)

    Refinement of 1p36 Alterations Not Involving PRDM16 in Myeloid and Lymphoid Malignancies

    Get PDF
    Fluorescence in situ hybridization was performed to characterize 81 cases of myeloid and lymphoid malignancies with cytogenetic 1p36 alterations not affecting the PRDM16 locus. In total, three subgroups were identified: balanced translocations (N = 27) and telomeric rearrangements (N = 15), both mainly observed in myeloid disorders; and unbalanced non-telomeric rearrangements (N = 39), mainly observed in lymphoid proliferations and frequently associated with a highly complex karyotype. The 1p36 rearrangement was isolated in 12 cases, mainly myeloid disorders. The breakpoints on 1p36 were more widely distributed than previously reported, but with identifiable rare breakpoint cluster regions, such as the TP73 locus. We also found novel partner loci on 1p36 for the known multi-partner genes HMGA2 and RUNX1. We precised the common terminal 1p36 deletion, which has been suggested to have an adverse prognosis, in B-cell lymphomas [follicular lymphomas and diffuse large B-cell lymphomas with t(14;18)(q32;q21) as well as follicular lymphomas without t(14;18)]. Intrachromosomal telomeric repetitive sequences were detected in at least half the cases of telomeric rearrangements. It is unclear how the latter rearrangements occurred and whether they represent oncogenic events or result from chromosomal instability during oncogenesis

    Low Concordance between Gene Expression Signatures in ER Positive HER2 Negative Breast Carcinoma Could Impair Their Clinical Application.

    No full text
    BACKGROUND:Numerous prognostic gene expression signatures have been recently described. Among the signatures there is variation in the constituent genes that are utilized. We aim to evaluate prognostic concordance among eight gene expression signatures, on a large dataset of ER positive HER2 negative breast cancers. METHODS:We analysed the performance of eight gene expression signatures on six different datasets of ER+ HER2- breast cancers. Survival analyses were performed using the Kaplan-Meier estimate of survival function. We assessed discrimination and concordance between the 8 signatures on survival and recurrence rates The Nottingham Prognostic Index (NPI) was used to to stratify the risk of recurrence/death. RESULTS:The discrimination ability of the whole signatures, showed fair discrimination performances, with AUC ranging from 0.64 (95%CI 0.55-0.73 for the 76-genes signatures, to 0.72 (95%CI 0.64-0.8) for the Molecular Prognosis Index T17. Low concordance was found in predicting events in the intermediate and high-risk group, as defined by the NPI. Low risk group was the only subgroup with a good signatures concordance. CONCLUSION:Genomic signatures may be a good option to predict prognosis as most of them perform well at the population level. They exhibit, however, a high degree of discordance in the intermediate and high-risk groups. The major benefit that we could expect from gene expression signatures is the standardization of proliferation assessment

    Tamoxifen and ovarian function.

    Get PDF
    BACKGROUND: Some studies suggest that the clinical parameter "amenorrhea" is insufficient to define the menopausal status of women treated with chemotherapy or tamoxifen. In this study, we investigated and compared the ovarian function defined either by clinical or biological parameters in pre-menopausal breast cancer patients treated with tamoxifen administered as adjuvant therapy. MATERIALS AND METHODS: Between 1999 and 2003, 138 premenopausal patients consecutively treated for early breast cancer were included. Sixty-eight received tamoxifen in monotherapy as the only adjuvant systemic treatment (Group I) and 70 were treated with tamoxifen after adjuvant chemotherapy (Group II). All patients had a confirmed premenopausal status based on clinical parameters and hormonal values at study entry. They were followed prospectively every 3 months for 3 years: menses data, physical examination and blood tests (LH, FSH, 17-beta-estradiol). Vaginal ultrasonography was carried out every 6 months. After 3 years, prospective evaluation was completed and monitoring of ovarian function was performed as usual in our institution (1x/year). All data were retrospectively evaluated in 2011. RESULTS: Three patients were excluded from the study in group I and 2 were excluded in group II. Patients were divided into 4 subgroups according to clinical data, i.e. menses patterns. These patterns were assessed by questionnaires. a: Regular menses (>10 cycles/year) b: Oligomenorrhea (5 to 9 cycles/year) c: Severe oligomenorrhea (1 to 4 cycles/year) d: Complete amenorrhea Estrogen levels did not appear to have any impact on disease-free survival rates after 3 or 8 years. FSH values were also documented and analyzed. They exhibited the same profile as estradiol values. CONCLUSIONS: Amenorrhea is an insufficient parameter to define menopausal status in patients receiving tamoxifen. Low estradiol levels must be coupled with other biological parameters to characterize endocrine status. These data are very important for the choice of endocrine therapy

    Concordance of the prediction with molecular signatures combination.

    No full text
    <p><b>Combination of 2 to 7 molecular signatures.</b> (A)Overall population (B) NPI risk groups.</p
    corecore