1,000 research outputs found

    Environmental governance for whom? Examining the political, institutional, fiscal, and legal determinants of state environmental agency budget policy in the US

    Get PDF
    Budgets are a prospective tool of governance, and appropriations are a planning vehicle reflecting: bureaucracies’ values, complex interactions, collective preferences, political influences, and available resources. Research spanning 30 years finds that environmental pollution is a key determinant of environmental budgets in the US, though myriad factors, actors, and subsystems are important to consider. Due to federalism and devolution of responsibilities and authorities, environmental governance falls largely to the states. While the dynamics that shape state environmental budget policy have received scholarly interest, theoretically-driven examinations of environmental appropriations remain limited within the public budgeting and environmental policy literature. Using panel data from 2010 to 2015, this dissertation examines the legal, political, institutional, and fiscal factors that influence state own-source environmental funding drawing from several theories. Given the key relationship between environmental pollution and environmental budgets—as stressed by previous scholarship—findings reveal the effects are conditioned on business interests from polluting sectors. While the interaction effect holds across funding sources, the negative budgetary influence depends on the type of air pollution modeled. Fiscal capacity is found to increase appropriations from state general funds but not appropriations from fees and other sources. Mandatory climate policies have a positive influence on budgets, though the evidence is inconsistent between models. Given cuts to federal environmental funding, flat trends in state funding, what factors influence the financing of environmental protection are of critical importance for civil society, practitioners, and public officials; therefore, this dissertation concludes with policy implications and avenues for future research

    Neuroendocrine Disruption: More than Hormones are Upset

    Get PDF
    Only a small proportion of the published research on endocrine-disrupting chemicals (EDC) directly examined effects on neuroendocrine processes. There is an expanding body of evidence that anthropogenic chemicals exert effects on neuroendocrine systems and that these changes might impact peripheral organ systems and physiological processes. Neuroendocrine disruption extends the concept of endocrine disruption to include the full breadth of integrative physiology (i.e., more than hormones are upset). Pollutants may also disrupt numerous other neurochemical pathways to affect an animal's capacity to reproduce, develop and grow, or deal with stress and other challenges. Several examples are presented in this review, from both vertebrates and invertebrates, illustrating that diverse environmental pollutants including pharmaceuticals, organochlorine pesticides, and industrial contaminants have the potential to disrupt neuroendocrine control mechanisms. While most investigations on EDC are carried out with vertebrate models, an attempt is also made to highlight the importance of research on invertebrate neuroendocrine disruption. The neurophysiology of many invertebrates is well described and many of their neurotransmitters are similar or identical to those in vertebrates; therefore, lessons learned from one group of organisms may help us understand potential adverse effects in others. This review argues for the adoption of systems biology and integrative physiology to address the effects of EDC. Effects of pulp and paper mill effluents on fish reproduction are a good example of where relatively narrow hypothesis testing strategies (e.g., whether or not pollutants are sex steroid mimics) have only partially solved a major problem in environmental biology. It is clear that a global, integrative physiological approach, including improved understanding of neuroendocrine control mechanisms, is warranted to fully understand the impacts of pulp and paper mill effluents. Neuroendocrine disruptors are defined as pollutants in the environment that are capable of acting as agonists/antagonists or modulators of the synthesis and/or metabolism of neuropeptides, neurotransmitters, or neurohormones, which subsequently alter diverse physiological, behavioral, or hormonal processes to affect an animal's capacity to reproduce, develop and grow, or deal with stress and other challenges. By adopting a definition of neuroendocrine disruption that encompasses both direct physiological targets and their indirect downstream effects, from the level of the individual to the ecosystem, a more comprehensive picture of the consequences of environmentally relevant EDC exposure may emerge

    Serum anti-flagellin and anti-lipopolysaccharide immunoglobulins as predictors of linear growth faltering in Pakistani infants at risk for environmental enteric dysfunction

    Get PDF
    Background: Environmental Enteric Dysfunction (EED) in children from low-income countries has been linked to linear growth declines. There is a critical need to identify sensitive and early EED biomarkers.Objective: Determine whether levels of antibodies against bacterial components flagellin (flic) and lipopolysaccharide (LPS) predict poor growth.Design/Methods: In a prospective birth cohort of 380 children in rural Pakistan blood and stool samples were obtained at ages 6 and 9 months. Linear mixed effects models were used to examine longitudinal associations between quartiles of anti-flic and anti-LPS antibodies and changes in LAZ, WAZ and WLZ scores. Spearman\u27s correlations were measured between anti-flic and anti-LPS immunoglobulins with measures of systemic/enteric inflammation and intestinal regeneration.Results: Anti-LPS IgA correlated significantly with CRP, AGP and Reg1 serum at 6mo and with MPO at 9mo. In multivariate analysis at 6mo of age, higher anti-LPS IgA levels predicted greater declines in LAZ scores over subsequent 18mo (comparing highest to lowest quartile, β (SE) change in LAZ score/year = -0.313 (0.125), p-value = 0.013). Anti-flic Ig A in the two highest quartiles measured at 9mo of age had declines in LAZ of -0.269 (0.126), p = 0.033; and -0.306 (0.129), p = 0.018 respectively, during the subsequent 18mo of life, compared to those in the lowest quartile of anti-flic IgA.Conclusions and Relevance: Elevated anti-flic IgA and anti-LPS IgA antibodies at 6 and 9mo, predict declines in linear growth. Systemic and enteric inflammation correlated with anti-LPS IgA provides mechanistic considerations for potential future interventions

    A New Evolutionary Algorithm-Based Home Monitoring Device for Parkinson’s Dyskinesia

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative movement disorder. Although there is no cure, symptomatic treatments are available and can significantly improve quality of life. The motor, or movement, features of PD are caused by reduced production of the neurotransmitter dopamine. Dopamine deficiency is most often treated using dopamine replacement therapy. However, this therapy can itself lead to further motor abnormalities referred to as dyskinesia. Dyskinesia consists of involuntary jerking movements and muscle spasms, which can often be violent. To minimise dyskinesia, it is necessary to accurately titrate the amount of medication given and monitor a patient’s movements. In this paper, we describe a new home monitoring device that allows dyskinesia to be measured as a patient goes about their daily activities, providing information that can assist clinicians when making changes to medication regimens. The device uses a predictive model of dyskinesia that was trained by an evolutionary algorithm, and achieves AUC>0.9 when discriminating clinically significant dyskinesia

    Molecular Detection of Invasive Species in Heterogeneous Mixtures Using a Microfluidic Carbon Nanotube Platform

    Get PDF
    Screening methods to prevent introductions of invasive species are critical for the protection of environmental and economic benefits provided by native species and uninvaded ecosystems. Coastal ecosystems worldwide remain vulnerable to damage from aquatic species introductions, particularly via ballast water discharge from ships. Because current ballast management practices are not completely effective, rapid and sensitive screening methods are needed for on-site testing of ships in transit. Here, we describe a detection technology based on a microfluidic chip containing DNA oligonucleotide functionalized carbon nanotubes. We demonstrate the efficacy of the chip using three ballast-transported species either established (Dreissena bugensis) or of potential threat (Eriocheir sinensis and Limnoperna fortuneii) to the Laurentian Great Lakes. With further refinement for on-board application, the technology could lead to real-time ballast water screening to improve ship-specific management and control decisions

    Revealing the Appetite of the Marine Aquarium Fish Trade: The Volume and Biodiversity of Fish Imported into the United States

    Get PDF
    The aquarium trade and other wildlife consumers are at a crossroads forced by threats from global climate change and other anthropogenic stressors that have weakened coastal ecosystems. While the wildlife trade may put additional stress on coral reefs, it brings income into impoverished parts of the world and may stimulate interest in marine conservation. To better understand the influence of the trade, we must first be able to quantify coral reef fauna moving through it. Herein, we discuss the lack of a data system for monitoring the wildlife aquarium trade and analyze problems that arise when trying to monitor the trade using a system not specifically designed for this purpose. To do this, we examined an entire year of import records of marine tropical fish entering the United States in detail, and discuss the relationship between trade volume, biodiversity and introduction of non-native marine fishes. Our analyses showed that biodiversity levels are higher than previous estimates. Additionally, more than half of government importation forms have numerical or other reporting discrepancies resulting in the overestimation of trade volumes by 27%. While some commonly imported species have been introduced into the coastal waters of the USA (as expected), we also found that some uncommon species in the trade have also been introduced. This is the first study of aquarium trade imports to compare commercial invoices to government forms and provides a means to, routinely and in real time, examine the biodiversity of the trade in coral reef wildlife species

    CYP24A1 variant modifies the association between use of oestrogen plus progestogen therapy and colorectal cancer risk

    Get PDF
    BACKGROUND: Menopausal hormone therapy (MHT) use has been consistently associated with a decreased risk of colorectal cancer (CRC) in women. Our aim was to use a genome-wide gene-environment interaction analysis to identify genetic modifiers of CRC risk associated with use of MHT. METHODS: We included 10 835 postmenopausal women (5419 cases and 5416 controls) from 10 studies. We evaluated use of any MHT, oestrogen-only (E-only) and combined oestrogen-progestogen (E+P) hormone preparations. To test for multiplicative interactions, we applied the empirical Bayes (EB) test as well as the Wald test in conventional case-control logistic regression as primary tests. The Cocktail test was used as secondary test. RESULTS: The EB test identified a significant interaction between rs964293 at 20q13.2/CYP24A1 and E+P (interaction OR (95% CIs)=0.61 (0.52-0.72), P=4.8 × 10(-9)). The secondary analysis also identified this interaction (Cocktail test OR=0.64 (0.52-0.78), P=1.2 × 10(-5) (alpha threshold=3.1 × 10(-4)). The ORs for association between E+P and CRC risk by rs964293 genotype were as follows: C/C, 0.96 (0.61-1.50); A/C, 0.61 (0.39-0.95) and A/A, 0.40 (0.22-0.73), respectively. CONCLUSIONS: Our results indicate that rs964293 modifies the association between E+P and CRC risk. The variant is located near CYP24A1, which encodes an enzyme involved in vitamin D metabolism. This novel finding offers additional insight into downstream pathways of CRC etiopathogenesis

    Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer

    Get PDF
    Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention. © 2014
    corecore