370 research outputs found
Recommended from our members
Theory of a strongly interacting electroweak symmetry-breaking sector
In this review we discuss theories of the electroweak-symmetry-breaking sector in which the W and Z interactions become strong at an energy scale not larger than a few TeV
Axion-Higgs Unification
In theories with no fundamental scalars, one gauge group can become strong at
a large scale Lambda and spontaneously break a global symmetry, producing the
Higgs and the axion as composite pseudo-Nambu-Goldstone bosons. We show how
KSVZ and DFSZ axion models can be naturally realised. The assumption Lambda
around 10^{11} GeV is phenomenologically favoured because: a) The axion solves
the QCD theta problem and provides the observed DM abundance; b) The observed
Higgs mass is generated via RGE effects from a small Higgs quartic coupling at
the compositeness scale, provided that the Higgs mass term is fine-tuned to be
of electroweak size; c) Lepton, quark as well as neutrino masses can be
obtained from four-fermion operators at the compositeness scale. d) The extra
fermions can unify the gauge couplings.Comment: 19 pages. Refs. added and eq. 3.6 fixe
On Composite Two Higgs Doublet Models
We investigate composite two Higgs doublet models realized as pseudo
Goldstone modes, generated through the spontaneous breaking of a global
symmetry due to strong dynamic at the TeV scale. A detailed comparative survey
of two possible symmetry breaking patterns, SU(5) -> SU(4) x U(1) and SU(5) x
SU(4), is made. We point out choices for the Standard Model fermion
representations that can alleviate some phenomenological constraints, with
emphasis towards a simultaneous solution of anomalous Zb\bar{b} coupling and
Higgs mediated Flavor Changing Neutral Currents. We also write down the kinetic
lagrangian for several models leading to Two Higgs Doublets and identify the
anomalous contributions to the T parameter. Moreover, we describe a model based
on the breaking in which there is no tree-level breaking of
custodial symmetry, discussing also the possible embeddings for the fermion
fields.Comment: 17 pages. Mistake corrected, added one section on a T- and flavor
safe model based on SO(9)/SO(8). Matches published versio
Effective String Theory Revisited
We revisit the effective field theory of long relativistic strings such as
confining flux tubes in QCD. We derive the Polchinski-Strominger interaction by
a calculation in static gauge. This interaction implies that a non-critical
string which initially oscillates in one direction gets excited in orthogonal
directions as well. In static gauge no additional term in the effective action
is needed to obtain this effect. It results from a one-loop calculation using
the Nambu-Goto action. Non-linearly realized Lorentz symmetry is manifest at
all stages in dimensional regularization. We also explain that independent of
the number of dimensions non-covariant counterterms have to be added to the
action in the commonly used zeta-function regularization.Comment: 21 pages, 4 figures, v2: typo corrected, references added, published
versio
Electroweak Symmetry Breaking in the DSSM
We study the theoretical and phenomenological consequences of modifying the
Kahler potential of the MSSM two Higgs doublet sector. Such modifications
naturally arise when the Higgs sector mixes with a quasi-hidden conformal
sector, as in some F-theory GUT models. In the Delta-deformed Supersymmetric
Standard Model (DSSM), the Higgs fields are operators with non-trivial scaling
dimension 1 < Delta < 2. The Kahler metric is singular at the origin of field
space due to the presence of quasi-hidden sector states which get their mass
from the Higgs vevs. The presence of these extra states leads to the fact that
even as Delta approaches 1, the DSSM does not reduce to the MSSM. In
particular, the Higgs can naturally be heavier than the W- and Z-bosons.
Perturbative gauge coupling unification, a large top quark Yukawa, and
consistency with precision electroweak can all be maintained for Delta close to
unity. Moreover, such values of Delta can naturally be obtained in
string-motivated constructions. The quasi-hidden sector generically contains
states charged under SU(5)_GUT as well as gauge singlets, leading to a rich,
albeit model-dependent, collider phenomenology.Comment: v3: 40 pages, 3 figures, references added, typos correcte
Model-Independent Bounds on a Light Higgs
We present up-to-date constraints on a generic Higgs parameter space. An
accurate assessment of these exclusions must take into account statistical, and
potentially signal, fluctuations in the data currently taken at the LHC. For
this, we have constructed a straightforward statistical method for making full
use of the data that is publicly available. We show that, using the expected
and observed exclusions which are quoted for each search channel, we can fully
reconstruct likelihood profiles under very reasonable and simple assumptions.
Even working with this somewhat limited information, we show that our method is
sufficiently accurate to warrant its study and advocate its use over more naive
prescriptions. Using this method, we can begin to narrow in on the remaining
viable parameter space for a Higgs-like scalar state, and to ascertain the
nature of any hints of new physics---Higgs or otherwise---appearing in the
data.Comment: 32 pages, 10 figures; v3: correction made to basis of four-derivative
operators in the effective Lagrangian, references adde
Minimal Flavour Violation with hierarchical squark masses
In a supersymmetric model with hierarchical squark masses we analyze a
pattern of flavour symmetry breaking centered on the special role of the top
Yukawa coupling and, by extension, of the full Yukawa couplings for the up-type
quarks. For sufficiently heavy squarks of the first and second generation this
leads to effective Minimal Flavour Violation of the Flavour Changing Neutral
Current amplitudes. For this to happen we determine the bounds on the masses of
the heavy squarks with QCD corrections taken into account, properly including
previously neglected effects. We believe that the view presented in this paper
altogether strengthens the case for hierarchical sfermions.Comment: 13 pages, 1 figure. v2: an equation correcte
Heavy-to-light baryonic form factors at large recoil
We analyze heavy-to-light baryonic form factors at large recoil and derive
the scaling behavior of these form factors in the heavy quark limit. It is
shown that only one universal form factor is needed to parameterize Lambda_b to
p and Lambda_b to Lambda matrix elements in the large recoil limit of light
baryons, while hadronic matrix elements of Lambda_b to Sigma transition vanish
in the large energy limit of Sigma baryon due to the space-time parity
symmetry. The scaling law of the soft form factor eta(P^{\prime} \cdot v),
P^{\prime} and v being the momentum of nucleon and the velocity of Lambda_b
baryon, responsible for Lambda_b to p transitions is also derived using the
nucleon distribution amplitudes in leading conformal spin. In particular, we
verify that this scaling behavior is in full agreement with that from
light-cone sum rule approach in the heavy-quark limit. With these form factors,
we further investigate the Lambda baryon polarization asymmetry alpha in
Lambda_b to Lambda gamma and the forward-backward asymmetry A_{FB} in Lambda_b
to Lambda l^{+} l^{-}. Both two observables (alpha and A_{FB}) are independent
of hadronic form factors in leading power of 1/m_b and in leading order of
alpha_s. We also extend the analysis of hadronic matrix elements for Omega_b to
Omega transitions to rare Omega_b to Omega gamma and Omega_b to Omega l^{+}
l^{-} decays and find that radiative Omega_b to Omega gamma decay is probably
the most promising FCNC b to s radiative baryonic decay channel. In addition,
it is interesting to notice that the zero-point of forward-backward asymmetry
of Omega_b to Omega l^{+} l^{-} is the same as the one for Lambda_b to Lambda
l^{+} l^{-} to leading order accuracy provided that the form factors
\bar{\zeta}_i (i=3, 4, 5) are numerically as small as indicated from the quark
model.Comment: 19 page
Partially Supersymmetric Composite Higgs Models
We study the idea of the Higgs as a pseudo-Goldstone boson within the
framework of partial supersymmetry in Randall-Sundrum scenarios and their CFT
duals. The Higgs and third generation of the MSSM are composites arising from a
strongly coupled supersymmetric CFT with global symmetry SO(5) spontaneously
broken to SO(4), whilst the light generations and gauge fields are elementary
degrees of freedom whose couplings to the strong sector explicitly break the
global symmetry as well as supersymmetry. The presence of supersymmetry in the
strong sector may allow the compositeness scale to be raised to ~10 TeV without
fine tuning, consistent with the bounds from precision electro-weak
measurements and flavour physics. The supersymmetric flavour problem is also
solved. At low energies, this scenario reduces to the "More Minimal
Supersymmetric Standard Model" where only stops, Higgsinos and gauginos are
light and within reach of the LHC.Comment: 28 pages. v2 minor changes and Refs. adde
- …