192 research outputs found

    Transport Far From Equilibrium --- Uniform Shear Flow

    Full text link
    The BGK model kinetic equation is applied to spatially inhomogeneous states near steady uniform shear flow. The shear rate of the reference steady state can be large so the states considered include those very far from equilibrium. The single particle distribution function is calculated exactly to first order in the deviations of the hydrodynamic field gradients from their values in the reference state. The corresponding non-linear hydrodynamic equaitons are obtained and the set of transport coefficients are identified as explicit functions of the shear rate. The spectrum of the linear hydrodynamic equation is studied in detail and qualitative differences from the spectrum for equilibrium fluctuations are discussed. Conditions for instabilities at long wavelengths are identified and disccused.Comment: 32 pages, 1 figure, RevTeX, submitted to Phys. Rev.

    Nonlinear response of electrons to a positive ion

    Full text link
    Electric field dynamics at a positive ion imbedded in an electron gas is considered using a semiclassical description. The dependence of the field autocorrelation function on charge number is studied for strong ion-electron coupling via MD simulation. The qualitative features for larger charge numbers are a decreasing correlation time followed by an increasing anticorrelation. Stopping power and related transport coefficients determined by the time integral of this correlation function result from the competing effects of increasing initial correlations and decreasing dynamical correlations. An interpretation of the MD results is obtained from an effective single particle model showing good agreement with the simulation results.Comment: To be published in the proceedings of the International Workshop on Strongly Coupled Coulomb Systems, Journal of Physics

    Theoretical Description of Coulomb Balls - Fluid Phase

    Full text link
    A theoretical description for the radial density profile of a finite number of identical charged particles confined in a harmonic trap is developed for application over a wide range of Coulomb coupling (or, equivalently, temperatures) and particle numbers. A simple mean field approximation neglecting correlations yields a density profile which is monotonically decreasing with radius for all temperatures, in contrast to molecular dynamics simulations and experiments showing shell structure at lower temperatures. A more complete theoretical description including charge correlations is developed here by an extension of the hypernetted chain approximation, developed for bulk fluids, to the confined charges. The results reproduce all of the qualitative features observed in molecular dynamics simulations and experiments. These predictions are then tested quantitatively by comparison with new benchmark Monte Carlo simulations. Quantitative accuracy of the theory is obtained for the selected conditions by correcting the hypernetted chain approximation with a representation for the associated bridge functions.Comment: 10 figures, submitted to Physical Review

    Long Wavelength Instability for Uniform Shear Flow

    Full text link
    Uniform Shear Flow is a prototype nonequilibrium state admitting detailed study at both the macroscopic and microscopic levels via theory and computer simulation. It is shown that the hydrodynamic equations for this state have a long wavelength instability. This result is obtained first from the Navier-Stokes equations and shown to apply at both low and high densities. Next, higher order rheological effects are included using a model kinetic theory. The results are compared favorably to those from Monte Carlo simulation.Comment: 12 pages, including 2 figure

    Continuum simulations of shocks and patterns in vertically oscillated granular layers

    Full text link
    We study interactions between shocks and standing-wave patterns in vertically oscillated layers of granular media using three-dimensional, time-dependent numerical solutions of continuum equations to Navier-Stokes order. We simulate a layer of grains atop a plate that oscillates sinusoidally in the direction of gravity. Standing waves form stripe patterns when the accelerational amplitude of the plate's oscillation exceeds a critical value. Shocks also form with each collision between the layer and the plate; we show that pressure gradients formed by these shocks cause the flow to reverse direction within the layer. This reversal leads to an oscillatory state of the pattern that is subharmonic with respect to the plate's oscillation. Finally, we study the relationship between shocks and patterns in layers oscillated at various frequencies and show that the pattern wavelength increases monotonically as the shock strength increases.Comment: 12 pages, 9 figure

    Aging to non-Newtonian hydrodynamics in a granular gas

    Get PDF
    The evolution to the steady state of a granular gas subject to simple shear flow is analyzed by means of computer simulations. It is found that, regardless of its initial preparation, the system reaches (after a transient period lasting a few collisions per particle) a non-Newtonian (unsteady) hydrodynamic regime, even at strong dissipation and for states where the time scale associated with inelastic cooling is shorter than the one associated with the irreversible fluxes. Comparison with a simplified rheological model shows a good agreement.Comment: 6 pages, 4 figures; v2: improved version to be published in EP

    Gaussian Kinetic Model for Granular Gases

    Full text link
    A kinetic model for the Boltzmann equation is proposed and explored as a practical means to investigate the properties of a dilute granular gas. It is shown that all spatially homogeneous initial distributions approach a universal "homogeneous cooling solution" after a few collisions. The homogeneous cooling solution (HCS) is studied in some detail and the exact solution is compared with known results for the hard sphere Boltzmann equation. It is shown that all qualitative features of the HCS, including the nature of over population at large velocities, are reproduced semi-quantitatively by the kinetic model. It is also shown that all the transport coefficients are in excellent agreement with those from the Boltzmann equation. Also, the model is specialized to one having a velocity independent collision frequency and the resulting HCS and transport coefficients are compared to known results for the Maxwell Model. The potential of the model for the study of more complex spatially inhomogeneous states is discussed.Comment: to be submitted to Phys. Rev.

    Critical Behavior of a Heavy Particle in a Granular Fluid

    Full text link
    Behavior analogous to a second order phase transition is observed for the homogeneous cooling state of a heavy impurity particle in a granular fluid. The order parameter ϕ\phi is the ratio of impurity mean square velocity to that of the fluid, with a conjugate field hh proportional to the mass ratio. A parameter β\beta , measuring the fluid cooling rate relative to the impurity--fluid collision rate, is the analogue of the inverse temperature. For β<1\beta <1 the fluid is ``normal'' with ϕ=0\phi =0 at h=0h=0, as in the case of a system with elastic collisions. For β>1\beta >1 an ``ordered'' state with ϕ≠0\phi \neq 0 occurs at h=0h=0, representing an extreme breakdown of equipartition. Critical slowing and qualitative changes in the velocity distribution function for the impurity particle near the transition are notedComment: 4 pages (4 figures included

    Rental Discrimination in the Multi-ethnic Metropolis: Evidence from Sydney

    Full text link
    © 2016 Editorial Board, Urban Policy and Research. Investigating differential treatment in rental housing markets is important to ensure that renters are not discriminated against based on their personal characteristics. However, little Australian research has focused systematically on this question. This paper reports the results of a study that used paired tests to estimate the extent of differential treatment of Anglo, Indian, and Muslim Middle Eastern renters in the Sydney metropolitan housing market. We find statistically significant differences in treatment on several measures, including the likelihood an agent will offer an individual appointment, will provide additional information about other housing, will provide additional information about completing the application form, and will contact a prospective renter after an inspection
    • …
    corecore