133 research outputs found

    Modelling low charge ions in the solar atmosphere

    Get PDF
    Extensions have been made recently to the coronal approximation for the purpose of modelling line emission from carbon and oxygen in the lower solar atmosphere. The same modelling is used here for other elements routinely observed in the solar transition region: N, Ne, Mg, Si, and S. The modelling includes the effects of higher densities suppressing dielectronic recombination and populating long lived, metastable levels; the presence of metastable levels typically causes effective ionization rates to increase and recombination rates to decrease. Processes induced by the radiation field, namely photoionization and photoexcitation, have been included, along with charge transfer, which occurs when electrons are exchanged during atom-ion and ion-ion collisions. The resulting ion balances are shown, and indicate significant changes compared to the frequently employed coronal approximation. The effect on level populations within ions caused by photoexcitation is also assessed. To give an illustration of how line emission could be altered by these processes, selected line contribution functions are presented at the end

    New atomic data for C i Rydberg states compared with solar UV spectra

    Get PDF
    We use the Breit-Pauli R-matrix method to calculate accurate energies and radiative data for states in C i up to n = 30 and with l ≤ 3. We provide the full data set of decays to the five 2s2 2p2 ground configuration states 3P0,1,21D2, and 1S0. This is the first complete set of data for transitions from n ≥ 5. We compare oscillator strengths and transition probabilities with the few previously calculated values for such transitions, finding generally good agreement (within 10 per cent) with the exception of values recently recommended by National Institute of Standards and Technology, where significant discrepancies are found. We then calculate spectral line intensities originating from the Rydberg states using typical chromospheric conditions and assuming local thermal equilibrium, and compare them with well-calibrated Solar and Heliospheric Observatory Solar Ultraviolet Measurements of Emitted Radiation ultraviolet (UV) spectra of the quiet Sun. The relative intensities of the Rydberg series are in excellent agreement with observation, which provides firm evidence for the identifications and blends of nearly 200 UV lines. Such comparison also resulted in a large number of new identifications of C i lines in the spectra. We also estimate optical depth effects and find that these can account for much of the absorption noted in the observations. The atomic data can be applied to model a wide range of solar and astrophysical observations

    Crack formation and prevention in colloidal drops

    Get PDF
    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticlesopen0

    Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942

    Get PDF
    Background: Simpler biological systems should be easier to understand and to engineer towards pre-defined goals. One way to achieve biological simplicity is through genome minimization. Here we looked for genomic islands in the fresh water cyanobacteria Synechococcus elongatus PCC 7942 (genome size 2.7 Mb) that could be used as targets for deletion. We also looked for conserved genes that might be essential for cell survival.Results: By using a combination of methods we identified 170 xenologs, 136 ORFans and 1401 core genes in the genome of S. elongatus PCC 7942. These represent 6.5%, 5.2% and 53.6% of the annotated genes respectively. We considered that genes in genomic islands could be found if they showed a combination of: a) unusual G+C content; b) unusual phylogenetic similarity; and/or c) a small number of the highly iterated palindrome 1 (HIP1) motif plus an unusual codon usage. The origin of the largest genomic island by horizontal gene transfer (HGT) could be corroborated by lack of coverage among metagenomic sequences from a fresh water microbialite. Evidence is also presented that xenologous genes tend to cluster in operons. Interestingly, most genes coding for proteins with a diguanylate cyclase domain are predicted to be xenologs, suggesting a role for horizontal gene transfer in the evolution of Synechococcus sensory systems.Conclusions: Our estimates of genomic islands in PCC 7942 are larger than those predicted by other published methods like SIGI-HMM. Our results set a guide to non-essential genes in S. elongatus PCC 7942 indicating a path towards the engineering of a model photoautotrophic bacterial cell.Financial support was provided by grants BFU2009-12895-C02-01/BMC (Ministerio de Ciencia e Innovación, Spain), the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 212894 and Prometeo/2009/092 (Conselleria d’Educació, Generalitat Valenciana, Spain) to A. Moya. Work in the FdlC laboratory was supported by grants BFU2008-00995/BMC (Spanish Ministry of Education), RD06/0008/1012 (RETICS research network, Instituto de Salud Carlos III, Spanish Ministry of Health) and LSHM-CT- 2005_019023 (European VI Framework Program). Dr. González-Domenech was supported by grant from the University of Granada. LD, thanks to financial support from Facultad de Ciencias, Universidad Nacional Autónoma de México

    Detection of Heteroplasmic Mitochondrial DNA in Single Mitochondria

    Get PDF
    BACKGROUND: Mitochondrial DNA (mtDNA) genome mutations can lead to energy and respiratory-related disorders like myoclonic epilepsy with ragged red fiber disease (MERRF), mitochondrial myopathy, encephalopathy, lactic acidosis and stroke (MELAS) syndrome, and Leber's hereditary optic neuropathy (LHON). It is not well understood what effect the distribution of mutated mtDNA throughout the mitochondrial matrix has on the development of mitochondrial-based disorders. Insight into this complex sub-cellular heterogeneity may further our understanding of the development of mitochondria-related diseases. METHODOLOGY: This work describes a method for isolating individual mitochondria from single cells and performing molecular analysis on that single mitochondrion's DNA. An optical tweezer extracts a single mitochondrion from a lysed human HL-60 cell. Then a micron-sized femtopipette tip captures the mitochondrion for subsequent analysis. Multiple rounds of conventional DNA amplification and standard sequencing methods enable the detection of a heteroplasmic mixture in the mtDNA from a single mitochondrion. SIGNIFICANCE: Molecular analysis of mtDNA from the individually extracted mitochondrion demonstrates that a heteroplasmy is present in single mitochondria at various ratios consistent with the 50/50 heteroplasmy ratio found in single cells that contain multiple mitochondria

    Claudin-1 Is a p63 Target Gene with a Crucial Role in Epithelial Development

    Get PDF
    The epidermis of the skin is a self-renewing, stratified epithelium that functions as the interface between the human body and the outer environment, and acts as a barrier to water loss. Components of intercellular junctions, such as Claudins, are critical to maintain tissue integrity and water retention. p63 is a transcription factor essential for proliferation of stem cells and for stratification in epithelia, mutated in human hereditary syndromes characterized by ectodermal dysplasia. Both p63 and Claudin-1 null mice die within few hours from birth due to dehydration from severe skin abnormalities. These observations suggested the possibility that these two genes might be linked in one regulatory pathway with p63 possibly regulating Claudin-1 expression. Here we show that silencing of ΔNp63 in primary mouse keratinocytes results in a marked down-regulation of Claudin-1 expression (−80%). ΔNp63α binds in vivo to the Claudin-1 promoter and activates both the endogenous Claudin-1 gene and a reporter vector containing a –1.4 Kb promoter fragment of the Claudin-1 gene. Accordingly, Claudin-1 expression was absent in the skin of E15.5 p63 null mice and natural p63 mutant proteins, specifically those found in Ankyloblepharon–Ectodermal dysplasia–Clefting (AEC) patients, were indeed altered in their capacity to regulate Claudin-1 transcription. This correlates with deficient Claudin-1 expression in the epidermis of an AEC patient carrying the I537T p63 mutation. Notably, AEC patients display skin fragility similar to what observed in the epidermis of Claudin-1 and p63 null mice. These findings reinforce the hypothesis that these two genes might be linked in a common regulatory pathway and that Claudin-1 may is an important p63 target gene involved in the pathogenesis of ectodermal dysplasias
    corecore