44 research outputs found
MitoTrack, a user-friendly semi-automatic software for lineage tracking in living embryos
International audienceMotivation: During development, progenitor cells undergo multiple rounds of cellular divisions during which tran-scriptional programs must be faithfully propagated. Investigating the timing of transcriptional activation, which is a highly stochastic phenomenon, requires the analysis of large amounts of data. In order to perform automatic image analysis of transcriptional activation, we developed a software that segments and tracks both small and large objects, leading the user from raw data up to the results in their final form. Results: MitoTrack is a user-friendly open-access integrated software that performs the specific dual task of reporting the precise timing of transcriptional activation while keeping lineage tree history for each nucleus of a living developing embryo. The software works automatically but provides the possibility to easily supervise, correct and validate each step. Availability and implementation: MitoTrack is an open source Python software, embedded within a graphical user interface (download here)
Polycomb Group-Dependent, Heterochromatin Protein 1-Independent, Chromatin Structures Silence Retrotransposons in Somatic Tissues Outside Ovaries
Somatic cells are equipped with different silencing mechanisms that protect the genome against retrotransposons. In Drosophila melanogaster, a silencing pathway implicating the argonaute protein PIWI represses retrotransposons in cells surrounding the oocyte, whereas a PIWI-independent pathway is involved in other somatic tissues. Here, we show that these two silencing mechanisms result in distinct chromatin structures. Using sensor transgenes, we found that, in somatic tissues outside of the ovaries, these transgenes adopt a heterochromatic configuration implicating hypermethylation of H3K9 and K27. We identified the Polycomb repressive complexes (PRC1 and 2), but not heterochromatin protein 1 to be necessary factors for silencing. Once established, the compact structure is stably maintained through cell divisions. By contrast, in cells where the silencing is PIWI-dependent, the transgenes display an open and labile chromatin structure. Our data suggest that a post-transcriptional gene silencing (PTGS) mechanism is responsible for the repression in the ovarian somatic cells, whereas a mechanism that couples PTGS to transcriptional gene silencing operates to silence retrotransposons in the other somatic tissues
Recommended from our members
Specific Localization of the Drosophila Telomere Transposon Proteins and RNAs, Give Insight in Their Behavior, Control and Telomere Biology in This Organism
Drosophila telomeres constitute a remarkable exception to the telomerase mechanism. Although maintaining the same cytological and functional properties as telomerase maintain telomeres, Drosophila telomeres embed the telomere retrotransposons whose specific and highly regulated terminal transposition maintains the appropriate telomere length in this organism. Nevertheless, our current understanding of how the mechanism of the retrotransposon telomere works and which features are shared with the telomerase system is very limited. We report for the first time a detailed study of the localization of the main components that constitute the telomeres in Drosophila, HeT-A and TART RNAs and proteins. Our results in wild type and mutant strains reveal localizations of HeT-A Gag and TART Pol that give insight in the behavior of the telomere retrotransposons and their control. We find that TART Pol and HeT-A Gag only co-localize at the telomeres during the interphase of cells undergoing mitotic cycles. In addition, unexpected protein and RNA localizations with a well-defined pattern in cells such as the ovarian border cells and nurse cells, suggest possible strategies for the telomere transposons to reach the oocyte, and/or additional functions that might be important for the correct development of the organism. Finally, we have been able to visualize the telomere RNAs at different ovarian stages of development in wild type and mutant lines, demonstrating their presence in spite of being tightly regulated by the piRNA mechanism.This work was supported by a grant from the Spanish Ministry of Science and Innovation BFU2009-08318/BMC to EC. A National Institutes of Health grant R01GM067758 to ERG. EL-P acknowledges the following short term Fellowships: Ruth Lee Kennedy (Fulbright), EMBO short term, Journal Cell Science traveling Fellowship, and the Spanish Society of Genetics traveling fellowship.Peer reviewe