6,400 research outputs found
Historical and interpretative aspects of quantum mechanics: a physicists' naive approach
Many theoretical predictions derived from quantum mechanics have been
confirmed experimentally during the last 80 years. However, interpretative
aspects have long been subject to debate. Among them, the question of the
existence of hidden variables is still open. We review these questions, paying
special attention to historical aspects, and argue that one may definitively
exclude local realism on the basis of present experimental outcomes. Other
interpretations of Quantum Mechanics are nevertheless not excluded.Comment: 30 page
The cool end of the DZ sequence in the SDSS
We report the discovery of cool DZ white dwarfs, which lie in the SDSS (u-g)
vs. (g-r) two-color diagram across and below the main sequence. These stars
represent the extension of the well-known DZ sequence towards cooler
temperatures.Comment: To appear in the proceedings of the "17th European Workshop on White
Dwarfs", Tuebingen, Germany, August 16-20, 201
Dynamic Excitation Related Uncertainty in Ambient Vibration Testing of a Truss Bridge
The aging and deteriorating state of bridges in the US, along with the many limitations of the visual inspection data that is used for assessing and evaluating their condition, have provided motivation for research on experimental methods to quantitatively describe and evaluate their in-situ performance and condition. Ambient vibration testing is one such global characterization approach that has been widely explored due to its low cost and ease of implementation for in-service bridges. The testing is used to identify the modal properties of the structure, typically the natural frequencies, mode shapes, and damping ratios. Although ambient vibration testing has been used for many structural identification and health monitoring applications with bridges, the measurements are subject to uncertainty from a number of different sources that can limit the reliability and effectiveness for many practical objectives. One possible source of uncertainty that is particularly challenging to quantify and evaluate relates to the actual nature of the uncontrolled and unmeasured dynamic excitation of the bridge that leads to its measured vibration responses. The uncontrolled dynamic excitation in an ambient vibration test comes from natural environmental inputs and operating traffic loads, and is assumed to be spatially distributed on the structure and to have broadband, uncorrelated Gaussian white noise characteristics. Presently, variations to this assumed character have only been evaluated analytically or indirectly from the measurement results. Both of these approaches are subject to limitations that only permit qualitative assessments of the excitation related uncertainty. This paper describes a study that was designed to experimentally evaluate the characteristics of the ambient dynamic excitation on the identified modal parameters for a full-scale truss bridge in a direct manner using controlled excitation from a spatially distributed network of dynamic exciters attached to the bridge. This novel and low-cost dynamic excitation system was developed by Dr. Grimmelsman and enabled the research team to apply controlled dynamic excitation to the bridge that was consistent with the characteristics normally assumed for ambient vibration testing and for known variations to these characteristics. The modal parameters identified from these controlled excitation cases were compared with those identified from uncontrolled ambient dynamic excitation of the bridge. The results showed that the effective bandwidth of the uncontrolled ambient excitation was relatively narrow, and that most consistent and reliable identification could be obtained when spatially distributed, broad band white noise excitation was supplied to the bridge using the dynamic excitation system. The dynamic excitation system was also observed to lead to bridge vibrations that were substantially larger than those induced by ambient natural sources demonstrating that it could be an effective tool for characterizing and evaluating excitation related uncertainty in ambient vibration testing for other short to medium span length bridges
Accretion and activity on the post-common-envelope binary RR~Cae
Current scenarios for the evolution of interacting close binaries - such as
cataclysmic variables (CVs) - rely mainly on our understanding of low-mass star
angular momentum loss (AML) mechanisms. The coupling of stellar wind with its
magnetic field, i.e., magnetic braking, is the most promising mechanism to
drive AML in these stars. There are basically two properties driving magnetic
braking: the stellar magnetic field and the stellar wind. Understanding the
mechanisms that drive AML therefore requires a comprehensive understanding of
these two properties. RRCae is a well-known nearby (d=20pc) eclipsing DA+M
binary with an orbital period of P=7.29h. The system harbors a metal-rich cool
white dwarf (WD) and a highly active M-dwarf locked in synchronous rotation.
The metallicity of the WD suggests that wind accretion is taking place, which
provides a good opportunity to obtain the mass-loss rate of the M-dwarf
component. We analyzed multi-epoch time-resolved high-resolution spectra of
RRCae in search for traces of magnetic activity and accretion. We selected a
number of well-known activity indicators and studied their short and long-term
behavior. Indirect-imaging tomographic techniques were also applied to provide
the surface brightness distribution of the magnetically active M-dwarf, and
reveals a polar feature similar to those observed in fast-rotating solar-type
stars. The blue part of the spectrum was modeled using a atmosphere model to
constrain the WD properties and its metal enrichment. The latter was used to
improve the determination of the mass-accretion rate from the M-dwarf wind. The
presence of metals in the WD spectrum suggests that this component arises from
accretion of the M-dwarf wind. A model fit to the WD gives Teff=(7260+/-250)K
and logg=(7.8+/-0.1) dex with a metallicity of =(-2.8+/-0.1)dex,
and a mass-accretion rate of dotMacc=(7+/-2)x1e-16Msun/yr.Comment: 14 pages, 7 Figures, 6 Table
Development of Analytical Models of T- and U-shaped Cantilever-based MEMS Devices for Sensing and Energy Harvesting Applications
Dynamic-mode cantilever-based structures supporting end masses are frequently used as MEMS/NEMS devices in application areas as diverse as chemical/biosensing, atomic force microscopy, and energy harvesting. This paper presents a new analytical solution for the free vibration of a cantilever with a rigid end mass of finite size. The effects of both translational and rotational inertia as well as horizontal eccentricity of the end mass are incorporated into the model. This model is general regarding the end-mass distribution/geometry and is validated here for the commonly encountered geometries of T- and U-shaped cantilevers. Comparisons with 3D FEA simulations and experiments on silicon and organic MEMS are quite encouraging. The new solution gives insight into device behavior, provides an efficient tool for preliminary design, and may be extended in a straightforward manner to account for inherent energy dissipation in the case of organic-based cantilevers
A Comprehensive Spectroscopic Analysis of DB White Dwarfs
We present a detailed analysis of 108 helium-line (DB) white dwarfs based on
model atmosphere fits to high signal-to-noise optical spectroscopy. We derive a
mean mass of 0.67 Mo for our sample, with a dispersion of only 0.09 Mo. White
dwarfs also showing hydrogen lines, the DBA stars, comprise 44% of our sample,
and their mass distribution appears similar to that of DB stars. As in our
previous investigation, we find no evidence for the existence of low-mass (M <
0.5 Mo) DB white dwarfs. We derive a luminosity function based on a subset of
DB white dwarfs identified in the Palomar-Green survey. We show that 20% of all
white dwarfs in the temperature range of interest are DB stars, although the
fraction drops to half this value above Teff ~ 20,000 K. We also show that the
persistence of DB stars with no hydrogen features at low temperatures is
difficult to reconcile with a scenario involving accretion from the
interstellar medium, often invoked to account for the observed hydrogen
abundances in DBA stars. We present evidence for the existence of two different
evolutionary channels that produce DB white dwarfs: the standard model where DA
stars are transformed into DB stars through the convective dilution of a thin
hydrogen layer, and a second channel where DB stars retain a helium-atmosphere
throughout their evolution. We finally demonstrate that the instability strip
of pulsating V777 Her white dwarfs contains no nonvariables, if the hydrogen
content of these stars is properly accounted for.Comment: 74 pages including 30 figures, accepted for publication in the
Astrophysical Journa
The Core Composition of a White Dwarf in a Close Double Degenerate System
We report the identification of the double degenerate system NLTT 16249 that
comprises a normal, hydrogen-rich (DA) white dwarf and a peculiar,
carbon-polluted white dwarf (DQ) showing photospheric traces of nitrogen. We
disentangled the observed spectra and constrained the properties of both
stellar components. In the evolutionary scenario commonly applied to the
sequence of DQ white dwarfs, both carbon and nitrogen would be dredged up from
the core. The C/N abundance ratio (~ 50) in the atmosphere of this unique DQ
white dwarf suggests the presence of unprocessed material (14N) in the core or
in the envelope. Helium burning in the DQ progenitor may have terminated early
on the red-giant branch after a mass-ejection event leaving unprocessed
material in the core although current mass estimates do not favor the presence
of a low-mass helium core. Alternatively, some nitrogen in the envelope may
have survived an abridged helium-core burning phase prior to climbing the
asymptotic giant-branch. Based on available data, we estimate a relatively
short orbital period (P <~ 13 hrs) and on-going spectroscopic observations will
help determine precise orbital parameters.Comment: Accepted for publication in ApJ Letter
- …