6,400 research outputs found

    Historical and interpretative aspects of quantum mechanics: a physicists' naive approach

    Get PDF
    Many theoretical predictions derived from quantum mechanics have been confirmed experimentally during the last 80 years. However, interpretative aspects have long been subject to debate. Among them, the question of the existence of hidden variables is still open. We review these questions, paying special attention to historical aspects, and argue that one may definitively exclude local realism on the basis of present experimental outcomes. Other interpretations of Quantum Mechanics are nevertheless not excluded.Comment: 30 page

    The cool end of the DZ sequence in the SDSS

    Full text link
    We report the discovery of cool DZ white dwarfs, which lie in the SDSS (u-g) vs. (g-r) two-color diagram across and below the main sequence. These stars represent the extension of the well-known DZ sequence towards cooler temperatures.Comment: To appear in the proceedings of the "17th European Workshop on White Dwarfs", Tuebingen, Germany, August 16-20, 201

    Dynamic Excitation Related Uncertainty in Ambient Vibration Testing of a Truss Bridge

    Get PDF
    The aging and deteriorating state of bridges in the US, along with the many limitations of the visual inspection data that is used for assessing and evaluating their condition, have provided motivation for research on experimental methods to quantitatively describe and evaluate their in-situ performance and condition. Ambient vibration testing is one such global characterization approach that has been widely explored due to its low cost and ease of implementation for in-service bridges. The testing is used to identify the modal properties of the structure, typically the natural frequencies, mode shapes, and damping ratios. Although ambient vibration testing has been used for many structural identification and health monitoring applications with bridges, the measurements are subject to uncertainty from a number of different sources that can limit the reliability and effectiveness for many practical objectives. One possible source of uncertainty that is particularly challenging to quantify and evaluate relates to the actual nature of the uncontrolled and unmeasured dynamic excitation of the bridge that leads to its measured vibration responses. The uncontrolled dynamic excitation in an ambient vibration test comes from natural environmental inputs and operating traffic loads, and is assumed to be spatially distributed on the structure and to have broadband, uncorrelated Gaussian white noise characteristics. Presently, variations to this assumed character have only been evaluated analytically or indirectly from the measurement results. Both of these approaches are subject to limitations that only permit qualitative assessments of the excitation related uncertainty. This paper describes a study that was designed to experimentally evaluate the characteristics of the ambient dynamic excitation on the identified modal parameters for a full-scale truss bridge in a direct manner using controlled excitation from a spatially distributed network of dynamic exciters attached to the bridge. This novel and low-cost dynamic excitation system was developed by Dr. Grimmelsman and enabled the research team to apply controlled dynamic excitation to the bridge that was consistent with the characteristics normally assumed for ambient vibration testing and for known variations to these characteristics. The modal parameters identified from these controlled excitation cases were compared with those identified from uncontrolled ambient dynamic excitation of the bridge. The results showed that the effective bandwidth of the uncontrolled ambient excitation was relatively narrow, and that most consistent and reliable identification could be obtained when spatially distributed, broad band white noise excitation was supplied to the bridge using the dynamic excitation system. The dynamic excitation system was also observed to lead to bridge vibrations that were substantially larger than those induced by ambient natural sources demonstrating that it could be an effective tool for characterizing and evaluating excitation related uncertainty in ambient vibration testing for other short to medium span length bridges

    Accretion and activity on the post-common-envelope binary RR~Cae

    Full text link
    Current scenarios for the evolution of interacting close binaries - such as cataclysmic variables (CVs) - rely mainly on our understanding of low-mass star angular momentum loss (AML) mechanisms. The coupling of stellar wind with its magnetic field, i.e., magnetic braking, is the most promising mechanism to drive AML in these stars. There are basically two properties driving magnetic braking: the stellar magnetic field and the stellar wind. Understanding the mechanisms that drive AML therefore requires a comprehensive understanding of these two properties. RRCae is a well-known nearby (d=20pc) eclipsing DA+M binary with an orbital period of P=7.29h. The system harbors a metal-rich cool white dwarf (WD) and a highly active M-dwarf locked in synchronous rotation. The metallicity of the WD suggests that wind accretion is taking place, which provides a good opportunity to obtain the mass-loss rate of the M-dwarf component. We analyzed multi-epoch time-resolved high-resolution spectra of RRCae in search for traces of magnetic activity and accretion. We selected a number of well-known activity indicators and studied their short and long-term behavior. Indirect-imaging tomographic techniques were also applied to provide the surface brightness distribution of the magnetically active M-dwarf, and reveals a polar feature similar to those observed in fast-rotating solar-type stars. The blue part of the spectrum was modeled using a atmosphere model to constrain the WD properties and its metal enrichment. The latter was used to improve the determination of the mass-accretion rate from the M-dwarf wind. The presence of metals in the WD spectrum suggests that this component arises from accretion of the M-dwarf wind. A model fit to the WD gives Teff=(7260+/-250)K and logg=(7.8+/-0.1) dex with a metallicity of =(-2.8+/-0.1)dex, and a mass-accretion rate of dotMacc=(7+/-2)x1e-16Msun/yr.Comment: 14 pages, 7 Figures, 6 Table

    Development of Analytical Models of T- and U-shaped Cantilever-based MEMS Devices for Sensing and Energy Harvesting Applications

    Get PDF
    Dynamic-mode cantilever-based structures supporting end masses are frequently used as MEMS/NEMS devices in application areas as diverse as chemical/biosensing, atomic force microscopy, and energy harvesting. This paper presents a new analytical solution for the free vibration of a cantilever with a rigid end mass of finite size. The effects of both translational and rotational inertia as well as horizontal eccentricity of the end mass are incorporated into the model. This model is general regarding the end-mass distribution/geometry and is validated here for the commonly encountered geometries of T- and U-shaped cantilevers. Comparisons with 3D FEA simulations and experiments on silicon and organic MEMS are quite encouraging. The new solution gives insight into device behavior, provides an efficient tool for preliminary design, and may be extended in a straightforward manner to account for inherent energy dissipation in the case of organic-based cantilevers

    A Comprehensive Spectroscopic Analysis of DB White Dwarfs

    Full text link
    We present a detailed analysis of 108 helium-line (DB) white dwarfs based on model atmosphere fits to high signal-to-noise optical spectroscopy. We derive a mean mass of 0.67 Mo for our sample, with a dispersion of only 0.09 Mo. White dwarfs also showing hydrogen lines, the DBA stars, comprise 44% of our sample, and their mass distribution appears similar to that of DB stars. As in our previous investigation, we find no evidence for the existence of low-mass (M < 0.5 Mo) DB white dwarfs. We derive a luminosity function based on a subset of DB white dwarfs identified in the Palomar-Green survey. We show that 20% of all white dwarfs in the temperature range of interest are DB stars, although the fraction drops to half this value above Teff ~ 20,000 K. We also show that the persistence of DB stars with no hydrogen features at low temperatures is difficult to reconcile with a scenario involving accretion from the interstellar medium, often invoked to account for the observed hydrogen abundances in DBA stars. We present evidence for the existence of two different evolutionary channels that produce DB white dwarfs: the standard model where DA stars are transformed into DB stars through the convective dilution of a thin hydrogen layer, and a second channel where DB stars retain a helium-atmosphere throughout their evolution. We finally demonstrate that the instability strip of pulsating V777 Her white dwarfs contains no nonvariables, if the hydrogen content of these stars is properly accounted for.Comment: 74 pages including 30 figures, accepted for publication in the Astrophysical Journa

    The Core Composition of a White Dwarf in a Close Double Degenerate System

    Full text link
    We report the identification of the double degenerate system NLTT 16249 that comprises a normal, hydrogen-rich (DA) white dwarf and a peculiar, carbon-polluted white dwarf (DQ) showing photospheric traces of nitrogen. We disentangled the observed spectra and constrained the properties of both stellar components. In the evolutionary scenario commonly applied to the sequence of DQ white dwarfs, both carbon and nitrogen would be dredged up from the core. The C/N abundance ratio (~ 50) in the atmosphere of this unique DQ white dwarf suggests the presence of unprocessed material (14N) in the core or in the envelope. Helium burning in the DQ progenitor may have terminated early on the red-giant branch after a mass-ejection event leaving unprocessed material in the core although current mass estimates do not favor the presence of a low-mass helium core. Alternatively, some nitrogen in the envelope may have survived an abridged helium-core burning phase prior to climbing the asymptotic giant-branch. Based on available data, we estimate a relatively short orbital period (P <~ 13 hrs) and on-going spectroscopic observations will help determine precise orbital parameters.Comment: Accepted for publication in ApJ Letter
    corecore