520 research outputs found

    Measurement of stellar and substellar winds using white dwarf hosts

    Get PDF
    White dwarfs stars are known to be polluted by their active planetary systems, but little attention has been paid to the accretion of wind from low-mass companions. The capture of stellar or substellar wind by white dwarfs is one of few methods available to astronomers which can assess mass-loss rates from unevolved stars and brown dwarfs, and the only known method to extract their chemical compositions. In this work, four white dwarfs with closely orbiting, L-type brown dwarf companions are studied to place limits on the accretion of a substellar wind, with one case of a detection, and at an extremely non-solar abundance mNa/mCa > 900. The mass-loss rates and upper limits are tied to accretion in the white dwarfs, based on limiting cases for how the wind is captured, and compared with known cases of wind pollution from close M dwarf companions, which manifest in solar proportions between all elements detected. For wind captured in a Bondi–Hoyle flow, mass-loss limits M˙≲5×10−17  M⊙yr−1 are established for three L dwarfs, while for M dwarfs polluting their hosts, winds in the range 10−13−10−16 M⊙yr−1 are found. The latter compares well with the M˙∼10−13−10−15  M⊙yr−1 estimates obtained for nearby, isolated M dwarfs using Lyα to probe their astropsheres. These results demonstrate that white dwarfs are highly sensitive stellar and substellar wind detectors, where further work on the actual captured wind flow is needed

    Acute Infections and Environmental Exposure to Organochlorines in Inuit Infants from Nunavik

    Get PDF
    The Inuit population of Nunavik (Canada) is exposed to immunotoxic organochlorines (OCs) mainly through the consumption of fish and marine mammal fat. We investigated the effect of perinatal exposure to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE) on the incidence of acute infections in Inuit infants. We reviewed the medical charts of a cohort of 199 Inuit infants during the first 12 months of life and evaluated the incidence rates of upper and lower respiratory tract infections (URTI and LRTIs, respectively), otitis media, and gastrointestinal (GI) infections. Maternal plasma during delivery and infant plasma at 7 months of age were sampled and assayed for PCBs and DDE. Compared to rates for infants in the first quartile of exposure to PCBs (least exposed), adjusted rate ratios for infants in higher quartiles ranged between 1.09 and 1.32 for URTIs, 0.99 and 1.39 for otitis, 1.52 and 1.89 for GI infections, and 1.16 and 1.68 for LRTIs during the first 6 months of follow-up. For all infections combined, the rate ratios ranged from 1.17 to 1.27. The effect size was similar for DDE exposure but was lower for the full 12-month follow-up. Globally, most rate ratios were > 1.0, but few were statistically significant (p < 0.05). No association was found when postnatal exposure was considered. These results show a possible association between prenatal exposure to OCs and acute infections early in life in this Inuit population

    TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain

    Get PDF
    Background: The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders. Methods: Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour. Results: We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity. Conclusions: These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response

    Visual Recognition of Age Class and Preference for Infantile Features: Implications for Species-Specific vs Universal Cognitive Traits in Primates

    Get PDF
    Despite not knowing the exact age of individuals, humans can estimate their rough age using age-related physical features. Nonhuman primates show some age-related physical features; however, the cognitive traits underlying their recognition of age class have not been revealed. Here, we tested the ability of two species of Old World monkey, Japanese macaques (JM) and Campbell's monkeys (CM), to spontaneously discriminate age classes using visual paired comparison (VPC) tasks based on the two distinct categories of infant and adult images. First, VPCs were conducted in JM subjects using conspecific JM stimuli. When analyzing the side of the first look, JM subjects significantly looked more often at novel images. Based on analyses of total looking durations, JM subjects looked at a novel infant image longer than they looked at a familiar adult image, suggesting the ability to spontaneously discriminate between the two age classes and a preference for infant over adult images. Next, VPCs were tested in CM subjects using heterospecific JM stimuli. CM subjects showed no difference in the side of their first look, but looked at infant JM images longer than they looked at adult images; the fact that CMs were totally naïve to JMs suggested that the attractiveness of infant images transcends species differences. This is the first report of visual age class recognition and a preference for infant over adult images in nonhuman primates. Our results suggest not only species-specific processing for age class recognition but also the evolutionary origins of the instinctive human perception of baby cuteness schema, proposed by the ethologist Konrad Lorenz

    Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins

    Get PDF
    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization

    The Myeloid Receptor PILRβ Mediates the Balance of Inflammatory Responses through Regulation of IL-27 Production

    Get PDF
    Paired immunoglobulin-like receptors beta, PILRβ, and alpha, PILRα, are related to the Siglec family of receptors and are expressed primarily on cells of the myeloid lineage. PILRβ is a DAP12 binding partner expressed on both human and mouse myeloid cells. The potential ligand, CD99, is found on many cell types, such as epithelial cells where it plays a role in migration of immune cells to sites of inflammation. Pilrb deficient mice were challenged with the parasite Toxoplasma gondii in two different models of infection induced inflammation; one involving the establishment of chronic encephalitis and a second mimicking inflammatory bowel disease in order to understand the potential role of this receptor in persistent inflammatory responses. It was found that in the absence of activating signals from PILRβ, antigen-presenting cells (APCs) produced increased amounts of IL-27, p28 and promoted IL-10 production in effector T cells. The sustained production of IL-27 led ultimately to enhanced survival after challenge due to dampened immune pathology in the gut. Similar protection was also observed in the CNS during chronic T. gondii infection after i.p. challenge again providing evidence that PILRβ is important for regulating aberrant inflammatory responses

    Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts

    Get PDF
    Sustainably managed non-native trees deliver economic and societal benefits with limited risk of spread to adjoining areas. However, some plantations have launched invasions that cause substantial damage to biodiversity and ecosystem services, while others pose substantial threats of causing such impacts. The challenge is to maximise the benefits of non-native trees, while minimising negative impacts and preserving future benefits and options. A workshop was held in 2019 to develop global guidelines for the sustainable use of non-native trees, using the Council of Europe – Bern Convention Code of Conduct on Invasive Alien Trees as a starting point. The global guidelines consist of eight recommendations: 1) Use native trees, or non-invasive non-native trees, in preference to invasive non-native trees; 2) Be aware of and comply with international, national, and regional regulations concerning non-native trees; 3) Be aware of the risk of invasion and consider global change trends; 4) Design and adopt tailored practices for plantation site selection and silvicultural management; 5) Promote and implement early detection and rapid response programmes; 6) Design and adopt tailored practices for invasive non-native tree control, habitat restoration, and for dealing with highly modified ecosystems; 7) Engage with stakeholders on the risks posed by invasive non-native trees, the impacts caused, and the options for management; and 8) Develop and support global networks, collaborative research, and information sharing on native and non-native trees. The global guidelines are a first step towards building global consensus on the precautions that should be taken when introducing and planting non-native trees. They are voluntary and are intended to complement statutory requirements under international and national legislation. The application of the global guidelines and the achievement of their goals will help to conserve forest biodiversity, ensure sustainable forestry, and contribute to the achievement of several Sustainable Development Goals of the United Nations linked with forest biodiversity

    Reversibility of liver fibrosis

    Get PDF
    Liver fibrosis, and its end stage cirrhosis are a major cause of morbidity and mortality and therapeutic options are limited. However, the traditional view of liver disease as an irreversible process is obsolete and it is now evident that the development of liver fibrosis is a dynamic and potentially bidirectional process. Spontaneous resolution of scarring is seen in animal models of liver fibrosis and in human trials in which the stimuli responsible for chronic or repeated hepatic inflammation is successfully removed. Key players in the process are hepatic stellate cells, macrophages, MMPs and their inhibitors Timps. It is also evident that in advanced fibrotic liver disease, specific histological features define what is currently described as "irreversible" fibrosis. This includes the development of paucicellular scars enriched in extensively cross-linked matrix components, such as fibrillar collagen and elastin. Our recent work has focused on the role of macrophage metalloelastase (MMP-12) in the turnover of elastin in reversible and irreversible models of fibrosis. We have shown that elastin turnover in liver injury and fibrosis is regulated by macrophages via Mmp-12 expression, activity and ratio to its inhibitor Timp-1. Failure of elastin degradation, together with increased deposition leads to accumulation of elastin in the fibrotic scars

    Escape of HIV-1-Infected Dendritic Cells from TRAIL-Mediated NK Cell Cytotoxicity during NK-DC Cross-Talk—A Pivotal Role of HMGB1

    Get PDF
    Early stages of Human Immunodeficiency Virus-1 (HIV-1) infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK) cells and dendritic cells (DCs). Immature DCs (iDCs) capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them (“editing process”) at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL)-Death Receptor 4 (DR4) pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DCHIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DCHIV. The escape of DCHIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP) and the cellular inhibitor of apoptosis 2 (c-IAP2), induced by NK-DCHIV cognate interaction. High-mobility group box 1 (HMGB1), an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DCHIV. Finally, we demonstrate that restoration of DCHIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific siRNA, or by inhibiting HMGB1 with blocking antibodies or glycyrrhizin, arguing for a key role of HMGB1 in TRAIL resistance and DCHIV survival. These findings provide evidence for a new strategy developed by HIV to escape immune attack, they challenge the question of the involvement of HMGB1 in the establishment of viral reservoirs in DCs, and they identify potential therapeutic targets to eliminate infected DCs
    corecore