168 research outputs found

    "Thermal Spike" model applied to thin targets irradiated with swift heavy ion beams at few MeV/u

    Get PDF
    International audienceHigh electronic excitations in radiation of metallic targets with swift heavy ion beams at the coulomb barrier play a dominant role in the damaging processes of some metals. The inelastic thermal spike model was developed to describe tracks in materials and is applied in this paper to some systems beams/targets employed recently in some nuclear physics experiments. Taking into account the experimental conditions and the approved electron-phonon coupling factors, the results of the calculation enable to interpret the observation of the fast deformation of some targets

    A case report of pseudoprogression followed by complete remission after proton-beam irradiation for a low-grade glioma in a teenager: the value of dynamic contrast-enhanced MRI

    Get PDF
    A fourteen years-old boy was treated post-operatively with proton therapy for a recurrent low-grade oligodendroglioma located in the tectal region. Six months after the end of irradiation (RT), a new enhancing lesion appeared within the radiation fields. To differentiate disease progression from radiation-induced changes, dynamic susceptibility contrast-enhanced (DSCE) MRI was used with a T2* sequence to study perfusion and permeability characteristics simultaneously. Typically, the lesion showed hypoperfusion and hyperpermeability compared to the controlateral normal brain. Without additional treatment but a short course of steroids, the image disappeared over a six months period allowing us to conclude for a pseudo-progression. The patient is alive in complete remission more than 2 years post-RT

    Metastatic Medulloblastoma in Childhood: Chang's Classification Revisited

    Get PDF
    Purpose. To correlate the radiological aspects of metastases, the response to chemotherapy, and patient outcome in disseminated childhood medulloblastoma. Patients and Methods. This population-based study concerned 117 newly diagnosed children with disseminated medulloblastoma treated at the Institute Gustave Roussy between 1988 and 2008. Metastatic disease was assessed using the Chang staging system, their form (positive cerebrospinal fluid (CSF), nodular or laminar), and their extension (positive cerebrospinal fluid, local, extensive). All patients received preirradiation chemotherapy. Results. The overall survival did not differ according to Chang M-stage. The 5-year overall survival was 59% in patients with nodular metastases compared to 35% in those with laminar metastases. The 5-year overall survival was 76% in patients without disease at the end of pre-irradiation chemotherapy compared to 34% in those without a complete response (P = 0.0008). Conclusions. Radiological characteristics of metastases correlated with survival in patients with medulloblastoma. Complete response to sandwich chemotherapy was a strong predictor of survival

    Astrocytes reverted to a neural progenitor-like state with transforming growth factor alpha are sensitized to cancerous transformation.

    Get PDF
    International audienceGliomas, the most frequent primitive central nervous system tumors, have been suggested to originate from astrocytes or from neural progenitors/stem cells. However, the precise identity of the cells at the origin of gliomas remains a matter of debate because no pre-neoplastic state has been yet identified. Transforming growth factor (TGF)-alpha, an epidermal growth factor family member, is frequently overexpressed in the early stages of glioma progression. We previously demonstrated that prolonged exposure of astrocytes to TGF-alpha is sufficient to trigger their reversion to a neural progenitor-like state. To determine whether TGF-alpha dedifferentiating effects are associated with cancerous transforming effects, we grafted intracerebrally dedifferentiated astrocytes. We show that these cells had the same cytogenomic profile as astrocytes, survived in vivo, and did not give birth to tumors. When astrocytes dedifferentiated with TGF-alpha were submitted to oncogenic stress using gamma irradiation, they acquired cancerous properties: they were immortalized, showed cytogenomic abnormalities, and formed high-grade glioma-like tumors after brain grafting. In contrast, irradiation did not modify the lifespan of astrocytes cultivated in serum-free medium. Addition of TGF-alpha after irradiation did not promote their transformation but decreased their lifespan. These results demonstrate that reversion of mature astrocytes to an embryonic state without genomic manipulation is sufficient to sensitize them to oncogenic stress

    Imaging and multi-omics datasets converge to define different neural progenitor origins for ATRT-SHH subgroups

    Get PDF
    Atypical teratoid rhabdoid tumors (ATRT) are divided into MYC, TYR and SHH subgroups, suggesting diverse lineages of origin. Here, we investigate the imaging of human ATRT at diagnosis and the precise anatomic origin of brain tumors in the Rosa26-CreERT2^{ERT2}::Smarcb1flox/flox^{flox/flox} model. This cross-species analysis points to an extra-cerebral origin for MYC tumors. Additionally, we clearly distinguish SHH ATRT emerging from the cerebellar anterior lobe (CAL) from those emerging from the basal ganglia (BG) and intra-ventricular (IV) regions. Molecular characteristics point to the midbrain-hindbrain boundary as the origin of CAL SHH ATRT, and to the ganglionic eminence as the origin of BG/IV SHH ATRT. Single-cell RNA sequencing on SHH ATRT supports these hypotheses. Trajectory analyses suggest that SMARCB1 loss induces a de-differentiation process mediated by repressors of the neuronal program such as REST, ID and the NOTCH pathway

    EMBR-25. Genome-wide genetic and epigenetic assessment of group 4 Medulloblastoma for improved, biomarker driven, prognostication and risk-stratification

    Get PDF
    Introduction: Medulloblastoma (MB) is the most common malignant brain tumour in children. The most frequent molecular subgroup, Group 4 (MBGrp4) accounts for ~35/40% of cases, however it has the least understood underlying biology. Clinical outcomes are heterogeneous in MBGrp4 and are not accounted for by established clinico-pathological risk factors. There is now a requirement for a comprehensive study of MBGrp4, considering established clinico-pathological features and novel molecular biomarkers to enhance risk-stratification and identify novel therapeutic targets. Methods: A clinically-annotated, retrospective MBGrp4 discovery cohort (n = 420) was generated from UK CCLG institutions, collaborating European centres and SIOP-UKCCSG-PNET3 and HIT-SIOP-PNET4 clinical trials. Contemporary, multi-omics profiling was performed. Focal and arm level copy number aberrations (CNAs) were determined from molecular inversion probe (MIP) or DNA methylation array which additionally provided next generation non-WNT/non-SHH (Grp3/Grp4) subtype classifications. Targeted next-generation DNA sequencing was performed to overlay the mutational landscape. Survival modelling was carried out with patients >3 years old who received craniospinal irradiation. Results: MBGrp4 subtypes were assigned to 88% of tumours with available data. Subtype VIII was strongly associated with i17q (p<0.0001). The favourable-risk cytogenetic signature (2 or 3 of; chromosome 7 gain, chromosome 8 loss and/or chromosome 11 loss) associated with both subtypes VI and VII (p<0.0001). MYCN amplifications were strongly associated with subtype V (p<0.0001) in addition to 16q loss (p<0.0001). The high-risk CNA group was enriched for mutations in genes involved in chromatin remodelling (p<0.0001). Risk factors were identified from multivariate survival modelling. Subtype and CNA groups contributed to improved risk-stratification models that outperformed current clinical schemes. Conclusion: Comprehensive genetic and epigenetic profiling in this large retrospective cohort has improved our understanding of the molecular and clinical heterogeneity within MBGrp4. Incorporation of molecular biomarkers improved risk-stratification for MBGrp4

    Relationships between Regional Radiation Doses and Cognitive Decline in Children Treated with Cranio-Spinal Irradiation for Posterior Fossa Tumors

    Get PDF
    Pediatric posterior fossa tumor (PFT) survivors who have been treated with cranial radiation therapy often suffer from cognitive impairments that might relate to IQ decline. Radiotherapy (RT) distinctly affects brain regions involved in different cognitive functions. However, the relative contribution of regional irradiation to the different cognitive impairments still remains unclear. We investigated the relationships between the changes in different cognitive scores and radiation dose distribution in 30 children treated for a PFT. Our exploratory analysis was based on a principal component analysis (PCA) and an ordinary least square regression approach. The use of a PCA was an innovative way to cluster correlated irradiated regions due to similar radiation therapy protocols across patients. Our results suggest an association between working memory decline and a high dose (equivalent uniform dose, EUD) delivered to the orbitofrontal regions, whereas the decline of processing speed seemed more related to EUD in the temporal lobes and posterior fossa. To identify regional effects of RT on cognitive functions may help to propose a rehabilitation program adapted to the risk of cognitive impairment

    Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a Rare Brain Tumor Consortium registry study

    Get PDF
    Pineoblastomas (PBs) are rare, aggressive pediatric brain tumors of the pineal gland with modest overall survival despite intensive therapy. We sought to define the clinical and molecular spectra of PB to inform new treatment approaches for this orphan cancer. Tumor, blood, and clinical data from 91 patients with PB or supratentorial primitive neuroectodermal tumor (sPNETs/CNS-PNETs), and 2 pineal parenchymal tumors of intermediate differentiation (PPTIDs) were collected from 29 centres in the Rare Brain Tumor Consortium. We used global DNA methylation profiling to define a core group of PB from 72/93 cases, which were delineated into five molecular sub-groups. Copy number, whole exome and targeted sequencing, and miRNA expression analyses were used to evaluate the clinico-pathologic significance of each sub-group. Tumors designated as group 1 and 2 almost exclusively exhibited deleterious homozygous loss-of-function alterations in miRNA biogenesis genes (DICER1, DROSHA, and DGCR8) in 62 and 100% of group 1 and 2 tumors, respectively. Recurrent alterations of the oncogenic MYC-miR-17/92-RB1 pathway were observed in the RB and MYC sub-group, respectively, characterized by RB1 loss with gain of miR-17/92, and recurrent gain or amplification of MYC. PB sub-groups exhibited distinct clinical features: group 1–3 arose in older children (median ages 5.2–14.0 years) and had intermediate to excellent survival (5-year OS of 68.0–100%), while Group RB and MYC PB patients were much younger (median age 1.3–1.4 years) with dismal survival (5-year OS 37.5% and 28.6%, respectively). We identified age
    corecore