4,103 research outputs found

    Improving the Functional Control of Aged Ferroelectrics using Insights from Atomistic Modelling

    Get PDF
    We provide a fundamental insight into the microscopic mechanisms of the ageing processes. Using large scale molecular dynamics simulations of the prototypical ferroelectric material PbTiO3, we demonstrate that the experimentally observed ageing phenomena can be reproduced from intrinsic interactions of defect-dipoles related to dopant-vacancy associates, even in the absence of extrinsic effects. We show that variation of the dopant concentration modifies the material's hysteretic response. We identify a universal method to reduce loss and tune the electromechanical properties of inexpensive ceramics for efficient technologies.Comment: 6 pages, 3 figure

    Hydrodynamic theory of de-wetting

    Full text link
    A prototypical problem in the study of wetting phenomena is that of a solid plunging into or being withdrawn from a liquid bath. In the latter, de-wetting case, a critical speed exists above which a stationary contact line is no longer sustainable and a liquid film is being deposited on the solid. Demonstrating this behavior to be a hydrodynamic instability close to the contact line, we provide the first theoretical explanation of a classical prediction due to Derjaguin and Levi: instability occurs when the outer, static meniscus approaches the shape corresponding to a perfectly wetting fluid

    Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent

    Full text link
    In this paper the long time behaviour of the solutions of 3-D strongly damped wave equation is studied. It is shown that the semigroup generated by this equation possesses a global attractor in H_{0}^{1}(\Omega)\times L_{2}(\Omega) and then it is proved that this global attractor is a bounded subset of H^{2}(\Omega)\times H^{2}(\Omega) and also a global attractor in H^{2}(\Omega)\cap H_{0}^{1}(\Omega)\times H_{0}^{1}(\Omega)

    Description of Fischer Clusters Formation in Supercooled Liquids Within Framework of Continual Theory of Defects

    Full text link
    Liquid is represented as complicated system of disclinations according to defect description of liquids and glasses. The expressions for the linear disclination field of an arbitrary form and energy of inter-disclination interaction are derived in the framework of gauge theory of defects. It allows us to describe liquid as a disordered system of topological moments and reduce this model to the Edwards--Anderson model with large-range interaction. Within the framework of this approach vitrifying is represented as a "hierarchical" phase transition. The suggested model allows us to explain the process of the Fischer clusters formation and the slow dynamics in supercooled liquids close to the liquid--glass transition point

    Deformation of a nearly hemispherical conducting drop due to an electric field: theory and experiment

    Get PDF
    We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly-hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel plate capacitor. Using both numerical and asymptotic approaches we find solutions to the coupled electrostatic and augmented Young–Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle and pressure as functions of the zero-field contact angle, drop radius, surface tension and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained

    Phantom scalar emission in the Kerr black hole spacetime

    Full text link
    We study the absorption probability and Hawking radiation spectra of a phantom scalar field in the Kerr black hole spacetime. We find that the presence of the negative kinetic energy terms modifies the standard results in the greybody factor, super-radiance and Hawking radiation. Comparing with the usual scalar particle, the phantom scalar emission is enhanced in the black hole spacetime.Comment: 11 pages, 6 figures, a revised version accepted for publication in CQ

    Deformation of the Fermi surface in the extended Hubbard model

    Full text link
    The deformation of the Fermi surface induced by Coulomb interactions is investigated in the t-t'-Hubbard model. The interplay of the local U and extended V interactions is analyzed. It is found that exchange interactions V enhance small anisotropies producing deformations of the Fermi surface which break the point group symmetry of the square lattice at the Van Hove filling. This Pomeranchuck instability competes with ferromagnetism and is suppressed at a critical value of U(V). The interaction V renormalizes the t' parameter to smaller values what favours nesting. It also induces changes on the topology of the Fermi surface which can go from hole to electron-like what may explain recent ARPES experiments.Comment: 5 pages, 4 ps figure

    Experimental investigation of early-time diffusion in the quantum kicked rotor using a Bose-Einstein condensate

    Full text link
    We report the experimental observation of resonances in the early-time momentum diffusion rates for the atom-optical delta-kicked rotor. In this work a Bose-Einstein condensate provides a source of ultra-cold atoms with an ultra-narow initial momentum distribution, which is then subjected to periodic pulses (or "kicks") using an intense far-detuned optical standing wave. A quantum resonance occurs when the momentum eigenstates accumulate the same phase between kicks leading to ballistic energy growth. Conversely, an anti-resonance is observed when the phase accumulated from successive kicks cancels and the system returns to its initial state. Our experimental results are compared with theoretical predictions.Comment: 6 pages, 6 figure

    Maintenance treatment of adolescent bipolar disorder: open study of the effectiveness and tolerability of quetiapine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of the study was to determine the effectiveness and tolerability of quetiapine as a maintenance treatment preventing against relapse or recurrence of acute mood episodes in adolescent patients diagnosed with bipolar disorder.</p> <p>Methods</p> <p>Consenting patients meeting DSM-IV lifetime criteria for a bipolar disorder and clinically appropriate for maintenance treatment were enrolled in a 48-week open prospective study. After being acutely stabilized (CGI-S ≤ 3 for 4 consecutive weeks), patients were started or continued on quetiapine and other medications were weaned off over an 8-week period. Quetiapine monotherapy was continued for 40-weeks and other mood stabilizers or antidepressants were added if clinically indicated. A neurocognitive test battery assessing the most reliable findings in adult patients was administered at fixed time points throughout the study to patients and matched controls.</p> <p>Results</p> <p>Of the 21 enrolled patients, 18 completed the 48-week study. Thirteen patients were able to be maintained without relapse or recurrence in good quality remission on quetiapine monotherapy, while 5 patients required additional medication to treat impairing residual depressive and/or anxiety symptoms. According to symptom ratings and global functioning scores, the quality of remission for all patients was very good.</p> <p>Neurocognitive test performance over treatment was equivalent to that of a matched control group of never ill adolescents. Quetiapine was generally well tolerated with no serious adverse effects.</p> <p>Conclusion</p> <p>This study suggests that a proportion of adolescent patients diagnosed with bipolar disorder can be successfully maintained on quetiapine monotherapy. The good quality of clinical remission and preserved neurocognitive functioning underscores the importance of early diagnosis and effective stabilization.</p> <p>Clinical Trials Registry</p> <p>D1441L00024</p
    corecore