147 research outputs found

    Born-Infeld strings between D-branes

    Get PDF
    We examine the solutions of world-volume action for a D3-brane being put near other D3-brane which is replaced by the background configuration of bulk space. It is shown that the BPS solutions are not affected by the D3-brane background, and they are interpreted as dyonic strings connecting two branes. On the contrary, the non-BPS configurations are largely influenced by the background D-brane, and we find that the solutions with pure electric charge cannot connect two branes. These solutions are corresponding to the bound state of brane and anti-brane which has been found by Callan and MaldacenaComment: 14 pages, 8 figure

    Modelling the impact of small farm mechanization

    Get PDF

    Intersecting D-Branes in ten and six dimensions

    Get PDF
    We show how, via TT-duality, intersecting DD-Brane configurations in ten (six) dimensions can be obtained from the elementary DD-Brane configurations by embedding a Type IIB DD-Brane into a Type IIB Nine-Brane (Five-Brane) and give a classification of such configurations. We show that only a very specific subclass of these configurations can be realized as (supersymmetric) solutions to the equations of motion of IIA/IIB supergravity. Whereas the elementary DD-brane solutions in d=10d=10 are characterized by a single harmonic function, those in d=6d=6 contain two independent harmonic functions and may be viewed as the intersection of two d=10d=10 elementary DD-branes. Using string/string/string triality in six dimensions we show that the heterotic version of the elementary d=6d=6 DD-Brane solutions correspond in ten dimensions to intersecting Neveu-Schwarz/Neveu-Schwarz (NS/NS) strings or five-branes and their TT-duals. We comment on the implications of our results in other than ten and six dimensions.Comment: 18 pages, Latex, (substantial changes in section 2

    Spacetime singularity resolution by M-theory fivebranes: calibrated geometry, Anti-de Sitter solutions and special holonomy metrics

    Full text link
    The supergravity description of various configurations of supersymmetric M-fivebranes wrapped on calibrated cycles of special holonomy manifolds is studied. The description is provided by solutions of eleven-dimensional supergravity which interpolate smoothly between a special holonomy manifold and an event horizon with Anti-de Sitter geometry. For known examples of Anti-de Sitter solutions, the associated special holonomy metric is derived. One explicit Anti-de Sitter solution of M-theory is so treated for fivebranes wrapping each of the following cycles: K\"{a}hler cycles in Calabi-Yau two-, three- and four-folds; special lagrangian cycles in three- and four-folds; associative three- and co-associative four-cycles in G2G_2 manifolds; complex lagrangian four-cycles in Sp(2)Sp(2) manifolds; and Cayley four-cycles in Spin(7)Spin(7) manifolds. In each case, the associated special holonomy metric is singular, and is a hyperbolic analogue of a known metric. The analogous known metrics are respectively: Eguchi-Hanson, the resolved conifold and the four-fold resolved conifold; the deformed conifold, and the Stenzel four-fold metric; the Bryant-Salamon-Gibbons-Page-Pope G2G_2 metrics on an R4\mathbb{R}^4 bundle over S3S^3, and an R3\mathbb{R}^3 bundle over S4S^4 or CP2\mathbb{CP}^2; the Calabi hyper-K\"{a}hler metric on TCP2T^*\mathbb{CP}^2; and the Bryant-Salamon-Gibbons-Page-Pope Spin(7)Spin(7) metric on an R4\mathbb{R}^4 bundle over S4S^4. By the AdS/CFT correspondence, a conformal field theory is associated to each of the new singular special holonomy metrics, and defines the quantum gravitational physics of the resolution of their singularities.Comment: 1+52 page

    Hamiltonian structure and noncommutativity in pp-brane models with exotic supersymmetry

    Full text link
    The Hamiltonian of the simplest super pp-brane model preserving 3/4 of the D=4 N=1 supersymmetry in the centrally extended symplectic superspace is derived and its symmetries are described. The constraints of the model are covariantly separated into the first- and the second-class sets and the Dirac brackets (D.B.) are constructed. We show the D.B. noncommutativity of the super pp-brane coordinates and find the D.B. realization of the OSp(18)OSp(1|8) superalgebra. Established is the coincidence of the D.B. and Poisson bracket realizations of the OSp(18)OSp(1|8) superalgebra on the constraint surface and the absence there of anomaly terms in the commutation relations for the quantized generators of the superalgebra.Comment: Latex, 27 pages, no figures. Latex packages amsfonts and euscript are use

    On BPS preons, generalized holonomies and D=11 supergravities

    Full text link
    We develop the BPS preon conjecture to analyze the supersymmetric solutions of D=11 supergravity. By relating the notions of Killing spinors and BPS preons, we develop a moving G-frame method (G=GL(32,R), SL(32,R) or Sp(32,R)) to analyze their associated generalized holonomies. As a first application we derive here the equations determining the generalized holonomies of k/32 supersymmetric solutions and, in particular, those solving the necessary conditions for the existence of BPS preonic (31/32) solutions of the standard D=11 supergravity. We also show that there exist elementary preonic solutions, i.e. solutions preserving 31 out of 32 supersymmetries in a Chern--Simons type supergravity. We present as well a family of worldvolume actions describing the motion of pointlike and extended BPS preons in the background of a D'Auria-Fre type OSp(1|32)-related supergravity model. We discuss the possible implications for M-theory.Comment: 11 pages, RevTeX Typos corrected, a short note and references adde

    N=31, D=11

    Get PDF
    We show that eleven-dimensional supergravity backgrounds with thirty one supersymmetries, N=31, admit an additional Killing spinor and so they are locally isometric to maximally supersymmetric ones. This rules out the existence of simply connected eleven-dimensional supergravity preons. We also show that N=15 solutions of type I supergravities are locally isometric to Minkowski spacetime.Comment: 17 page

    The holonomy of the supercovariant connection and Killing spinors

    Full text link
    We show that the holonomy of the supercovariant connection for M-theory backgrounds with NN Killing spinors reduces to a subgroup of SL(32-N,\bR)\st (\oplus^N \bR^{32-N}). We use this to give the necessary and sufficient conditions for a background to admit NN Killing spinors. We show that there is no topological obstruction for the existence of up to 22 Killing spinors in eleven-dimensional spacetime. We investigate the symmetry superalgebras of supersymmetric backgrounds and find that their structure constants are determined by an antisymmetric matrix. The Lie subalgebra of bosonic generators is related to a real form of a symplectic group. We show that there is a one-one correspondence between certain bases of the Cartan subalgebra of sl(32, \bR) and supersymmetric planar probe M-brane configurations. A supersymmetric probe configuration can involve up to 31 linearly independent planar branes and preserves one supersymmetry. The space of supersymmetric planar probe M-brane configurations is preserved by an SO(32,\bR) subgroup of SL(32, \bR).Comment: 27 pages, a key reference was added. v3: minor change

    Multiple Intersections of D-branes and M-branes

    Get PDF
    We give a classification of all multiple intersections of D-branes in ten dimensions and M-branes in eleven dimensions that corresponds to threshold BPS bound states. The residual supersymmetry of these composite branes is determined. By dimensional reduction composite p-branes in lower dimensions can be constructed. We emphasize in dimensions D greater or equal than two, those solutions which involve a single scalar and depend on a single harmonic function. For these extremal branes we obtain the strength of the coupling between the scalar and the gauge field. In particular we give a D-brane and M-brane interpretation of extreme p-branes in two, three and four dimensions.Comment: 28 pages, LaTeX, 4 figures, corrections in table 1 and figure

    BPS preons and the AdS-M-algebra

    Full text link
    We present here the AdS generalization of BPS preons, which were introduced as the hypothetical constituents of M-theory preserving all but one supersymmetries. Our construction, suggested by the relation of `lower dimensional preons' with higher spin theories, can be considered as a deformation of the M-algebraic description of the single supersymmetry broken by a preon, and provides another reason to identify the AdS generalization of the M-algebra, which we call the AdS-M-algebra, with osp(1|32).Comment: Plain latex, no figures, 19 pages minor corrections, one ref. added, as published in JHEP 04 (2008) 06
    corecore