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1. Introduction

The spinorial geometry technique is an effective tool to solve the Killing spinor equations

of supergravity theories [2]. It is based on the use of gauge symmetry of the Killing spinor

equations, on a description of spinors in terms of forms and on an oscillator basis in the

space of spinors. Recently, it has been adapted to investigate backgrounds with near

maximal number of supersymmetries. In particular it was found that IIB supergravity

backgrounds with 31 supersymmetries, N = 31, are maximally supersymmetric [3]. This

was extended in [4], using a different method, to show that IIA N = 31 supergravity

backgrounds are also maximally supersymmetric. Later the spinorial geometry approach

was applied to lower-dimensional supergravities1 with similar results [5].

In this paper, we shall show that the N = 31 backgrounds of eleven-dimensional

supergravity [6], termed as preons in [7], admit locally an additional Killing spinor and

so they are maximally supersymmetric. Although this result is similar to those in type II

supergravities mentioned above, there are some differences. To establish the type II results,

the algebraic Killing spinor equations of type II supergravities have been instrumental. The

remaining parallel transport equations were not explicitly solved and instead the result

1Technical innovations developed for this paper have been applied to establish the results in lower

dimensions. This project precedes those in [5].
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followed by an indirect argument. The eleven-dimensional supergravity does not have an

algebraic Killing spinor equation. So to show that the N = 31 backgrounds are locally

isometric to the maximally supersymmetric ones, the parallel transport equation

DAεr = 0 , r = 1, . . . , 31 , (1.1)

has to be solved explicitly. For this, one investigates the first integrability condition

RABεr = [DA,DB ]εr = 0 , (1.2)

where R is the supercovariant curvature. The stability subgroup, Stab(ε), of 31 spinors ε

in the holonomy group SL(32, R) is Stab(ε) = R
31 [8 – 10]. Thus the integrability condition

leaves undetermined 31 components of R represented by 31 two-forms ur
AB. The task

is to show that these components vanish as well and so the (reduced) holonomy of the

supercovariant connection for 31 Killing spinors is in fact {1}. To do this, we shall use

a modification of the procedure outlined in [3] which utilizes the normal ν of the Killing

spinors εr and which is explained in the next section. Then we shall use the Bianchi

identities, the field equations and the explicit expression of R in terms of the fields of

eleven-dimensional supergravity to show that the supercovariant curvature vanishes, R =

0. The latter condition is sufficient to demonstrate that the N = 31 backgrounds are

locally isometric to the maximally supersymmetric ones. The maximally supersymmetric

backgrounds have been classified in [11], and has been shown to be locally isometric to

Minkowski space R
10,1, the Freund-Rubin [12] spaces AdS4 × S7 and AdS7 × S4, and the

Kowalski-Glikman plane wave [13], see also [14].

On non-simply connected spacetimes, the vanishing of the supercovariant curvature,

R = 0, does not always imply the existence of 32 linearly independent solutions for the

parallel transport equation (1.1). There is also the additional subtlety of the existence

of different spin structures on non-simply connected spacetimes. Since we show that the

N = 31 backgrounds are locally isometric to the maximally supersymmetric ones, one may

be able to construct N = 31 supersymmetric backgrounds by identifying one of the maximal

supersymmetric ones with a discrete subgroup of its symmetry group. A large class of such

backgrounds were constructed in [15] after identification with a cyclic subgroup of the

symmetry group. None of these preserve 31 supersymmetries.2 This may indicate that

non-simply connected backgrounds with N = 31 supersymmetries do not exist but some

further investigation is required to establish this. The absence of N = 31 supersymmetric

backgrounds will be in agreement with a conjecture in [16] which was formulated under

the assumption that the Killing spinors must lie in certain representations of subgroups of

Spin(10, 1).

We also show that the N = 15 solutions in type I supergravities are locally maximally

supersymmetric. This easily follows from our result in IIB [3] and the investigation of the

Killing spinor equations of the heterotic supergravity in [17].

The paper has been organized as follows. In section two, we explain the procedure

we use to investigate backgrounds with 31 supersymmetries and collect some useful formu-

lae. In addition, we show that there are two cases to examine depending on the stability

2We thank J. Figueroa O’Farrill for helpful discussions on this point.
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subgroup of the normal ν to the 31 Killing spinors in Spin(10, 1). In section three, we

investigate the N = 31 backgrounds whose normal ν has stability subgroup SU(5), and in

section four we examine the N = 31 backgrounds whose normal ν has stability subgroup

(Spin(7) n R
8) × R. In both cases, we establish that the N = 31 backgrounds are locally

isometric to the maximally supersymmetric ones. In section five, we examine the N = 15

backgrounds of type I supergravities. In section six, we present our conclusions.

2. Supercurvature and Killing spinors

As we have mentioned, a consequence of the Killing spinor equations is the integrability

condition (1.2). In [3], it was proposed to solve this condition directly. This has been

facilitated by first using the gauge symmetry of the Killing spinor equations to choose the

direction of the normal spinor ν of the N = 31 Killing spinors. In turn the gauge symmetry

orients the hyperplane of the 31 Killing spinors along particular directions. This simplifies

the expression for the Killing spinors and then using spinorial geometry the condition

Rεr = 0 gives rise to a linear system for the various components of the supercurvature.

The linear system can be solved to give the conditions on R imposed by supersymmetry.

Although this is the original way that we have tackled the problem, it turns out there is a

simpler way to explore the integrability condition (1.2). For this let εr, r = 1, . . . , N , be a

basis in the space of Killing spinors and extend it as (εr, ε̃q), q = N + 1, . . . , 32 to a basis

in the space of spinors. Then observe that the supercovariant curvature for a background

with N Killing spinors can be written as

RMN,ab = UMN,rp εr
aν

p
b + UMN,pq ε̃p

aν
q
b , (2.1)

where νp are normal to the Killing spinors, a, b = 1, . . . , 32 are spinor indices,

B(εr, νq) = 0 , (2.2)

and U are spacetime dependent two-forms. (Throughout this paper we use the conventions

of [18].) Clearly (2.1) satisfies the integrability condition (1.2) because of (2.2). Since the

holonomy of the supercovariant connection is contained in SL(32, R), one finds that

UMN,pq B(ε̃p, νq) = 0 . (2.3)

Taking into account this condition, the number of independent two-forms U that appear

in (2.1) is 322 − 32N − 1 which is the dimension of the stability subgroup SL(32−N, R) n

(⊕NR
32−N ) of N spinors in SL(32, R), see [8 – 10, 19].

In many cases of interest, the Killing spinors can be (locally) expressed in terms of a

convenient basis ηr as

εr = f r
sη

s , (2.4)

where f is an N × N invertible matrix of spacetime functions. If (ηr, η̃p) is a basis in the

space of spinors, then (2.1) can be written as

RMN,ab = uMN,rp ηr
aν

p
b + uMN,pq η̃p

aν
q
b , (2.5)

– 3 –
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where U and u are related in a straightforward way.

The supercurvature can be written as

RMN,ab =

5∑

k=1

1

k!
(T k

MN )A1A2...Ak
(ΓA1A2...Ak)ab , (2.6)

where T k depends on the frame e and four-form field strength F of eleven-dimensional

supergravity. The relevant expressions3 can be found in [20, 11]. It is also known that

ηaθb =
1

32

5∑

k=0

(−1)k+1

k!
B(η,ΓA1A2...Ak

θ) (ΓA1A2...Ak)ab . (2.7)

This in particular implies that

(T k
MN )A1A2...Ak

=
(−1)k+1

32
[uMN,ip B(ηi,ΓA1A2...Ak

νp) + uMN,pq B(η̃p,ΓA1A2...Ak
νq)](2.8)

subject to the condition (2.3) which can now be rewritten as

uMN,pq B(η̃p, νq) = 0 . (2.9)

The conditions (2.8) are equivalent to those that arise from the direct solution of the

integrability condition (1.2). The advantage is that (2.8) is more easy to handle.

The conditions (2.8) and (2.9) can be easily adapted to backgrounds with 31 super-

symmetries to find

(T k
MN )A1A2...Ak

=
(−1)k+1

32
uMN,r B(ηr,ΓA1A2...Ak

ν) . (2.10)

The second term in the r.h.s of (2.8) vanishes because of (2.9). This formula is consistent

with the requirement that the holonomy of the supercovariant connection for N = 31

configurations is in R
31.

Apart from the restrictions required by holonomy and described above, the superco-

variant curvature R satisfies additional conditions which arise from the field equations, the

Bianchi identities of the Riemann curvature R of the spacetime and of the four-form field

strength F of eleven-dimensional supergravity, and the explicit expression of the compo-

nents of R in terms of the fields. We can derive some of them by observing that ΓNRMN is

a linear combination of field equations and Bianchi identities, and so it necessarily vanishes.

In turn this leads to the vanishing of the following linear combinations of the components

of R:

(T 1
MN )N = 0 , (T 2

MN )P
N = 0 , (T 1

MP1
)P2

+ 1
2(T 3

MN )P1P2

N = 0 ,

(T 2
M [P1

)P2P3] − 1
3 (T 4

MN )P1P2P3

N = 0 , (T 3
M [P1

)P2P3P4] + 1
4(T 5

MN )P1···P4

N = 0 ,

(T 4
M [P1

)P2···P5] −
1

5 · 5!εP1···P5

Q1···Q6(T 5
MQ1

)Q2···Q6
= 0 . (2.11)

3There are some apparent typos in the expression for R in [11].
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The second and third of these equations are consequences of the Einstein and F field

equations, respectively. We shall also use the additional conditions

(T 1
MN )P = (T 1

[MN )P ] , (T 2
MN )PQ = (T 2

PQ)MN , (T 3
[MN )PQR] = 0 , (2.12)

which can be easily derived by inspecting the explicit expressions of T k in terms of the

physical fields in [11] and by using the Bianchi identity of F . Observe that the first condition

in (2.11) is a consequence of the first condition in (2.12). It will turn out that (2.11), (2.12),

the expression of T k in terms of the physical fields and the conditions (2.10) are sufficient

for the proof that we shall present.

It has been known for some time that there are two kinds of orbits of Spin(10, 1) in the

space of Majorana spinors of eleven-dimensional supergravity. One has stability subgroup

SU(5) and the other has stability subgroup (Spin(7) n R
8) × R [21, 22]. Therefore, there

are two cases of N = 31 backgrounds to explore depending on in which orbit the normal

ν of the Killing spinors lies. This is similar to the N = 31 IIB backgrounds in [3]. The

Killing spinor equations for the associated N = 1 eleven-dimensional backgrounds have

been solved in [23]. We shall investigate the two N = 31 cases separately.

3. SU(5)-invariant normal

3.1 Integrability conditions

To derive the conditions that the integrability of the Killing spinor equations imposes on the

supercurvature, without loss of generality, we choose the normal of the 31 Killing spinors

as

ν = 1 + e12345 , (3.1)

in the “time-like” spinor basis of [18]. Then the Killing spinors can be written as

εr = f r
sη

s , (3.2)

where f is a 31 × 31 invertible matrix of real spacetime functions and ηs is a basis of 31

linearly independent Majorana spinors. This basis can be chosen as

η0 = ν = 1 + e12345 ,

ηk = −i(ek − 1

4!
εk

q1q2q3q4eq1q2q3q4
) , η5+k = ek +

1

4!
εk

q1q2q3q4eq1q2q3q4
,

ηkl = ekl −
1

3!
εkl

q1q2q3eq1q2q3
, η̂kl = i(ekl +

1

3!
εkl

q1q2q3eq1q2q3
) , (3.3)

where k, l = 1, . . . , 5. Observe that the linearly independent Majorana spinor i− ie12345 is

not orthogonal to the normal ν and so it has been excluded from the basis. It is convenient

for what follows to set θ0 = η0 and then choose a ‘holomorphic’ basis for the rest of the

spinors as

θα = ηα + iηα+5 , θᾱ = ηα − iηα+5 ,

θαβ = ηαβ + iη̂αβ , θᾱβ̄ = ηαβ − iη̂αβ , (3.4)

– 5 –
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i.e. decompose 31 = 1⊕5⊕5̄⊕10⊕1̄0 in SU(5) representations and so r = (0, α, ᾱ, αβ, ᾱβ̄).

This has the advantage that the conditions (2.10) can be expressed in an SU(5) covariant

manner.

To find the conditions that arise from the integrability condition (2.10), it is necessary

to compute the spinor bi-linear forms. These have been presented in appendix A. It is then

straightforward to see that (2.10) implies that

uMN,0 = −(T 1
MN )0 , uMN,α = (T 1

MN )α , uMN,αβ =
1

2
√

2
i(T 2

MN )αβ . (3.5)

In addition, (2.10) gives

(T 2)0α = i(T 1)α ,

(T 2)αβ̄ = −igαβ̄(T 1)0 ,

(T 3)0β1β2
= −i(T 2)β1β2

,

(T 3)0αβ̄ = 0 ,

(T 3)β̄1β̄2β̄3
= 1

2

√
2εβ̄1β̄2β̄3

α1α2(T 2)α1α2
,

(T 3)αβ̄1β̄2
= −2(T 1)[β̄1

gβ̄2]α
,

(T 4)0β̄1β̄2β̄3
= −1

2

√
2iεβ̄1β̄2β̄3

α1α2(T 2)α1α2
,

(T 4)0αβ̄1β̄2
= 2i(T 1)[β̄1

gβ̄2]α ,

(T 4)α1α2α3α4
= −2

√
2εα1α2α3α4

β̄(T 1)β̄ ,

(T 4)αβ̄1β̄2β̄3
= 3(T 2)[β̄1β̄2

gβ̄3]α ,

(T 4)α1α2γ̄1γ̄2
= 0 ,

(T 5)0α1α2α3α4
= 2

√
2iεα1α2α3α4

β̄(T 1)β̄ ,

(T 5)0αβ̄1β̄2β̄3
= 3i(T 2)[β̄1β̄2

gβ̄3]α ,

(T 5)0α1α2β̄1β̄2
= −2(T 1)0gα1[β̄1

gβ̄2]α2
,

(T 5)α1···α5
= 2

√
2iεα1···α5

(T 1)0 ,

(T 5)αβ̄1β̄2β̄3β̄4
= −

√
2εβ̄1β̄2β̄3β̄4

γ(T 2)αγ ,

(T 5)α1α2β̄1β̄2β̄3
= −6(T 1)[β̄1

g|α1|β̄2
gβ̄3]α2

, (3.6)

where we have suppressed the two-form indices. Observe that all T k have been expressed

in terms of T 1 and T 2. The above conditions are equivalent to the integrability condi-

tion Rεr = 0. Clearly, they do not imply that R = 0. It now remains to impose the

conditions (2.11) and (2.12).

3.2 Solving the conditions

We shall first show using (2.11), (2.12) and (3.6) that T 1 vanishes. For this observe

that (3.6) together with the skew-symmetry of T 1, (2.12), implies that

(T 2
0α)βγ̄ = −iT 1

0α0 gβγ̄ = 0 . (3.7)

Using the symmetry property of T 2 in (2.12), this leads to

(T 2
βγ̄)0α = iT 1

αβγ̄ = 0 , (3.8)

– 6 –
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and hence the (2, 1) and (1, 2) parts of T 1 vanish. Turning to the field equations, using the

Einstein equation in (2.11) and (3.6), we find that

T 1
0α

α = T 1
0αβ = 0 , (T 2

αγ)β̄
γ = −2iT 1

0αβ̄
. (3.9)

Similarly, the gauge field equation in (2.11) leads to

T 1
αβγ = 0 . (3.10)

The only remaining component of T 1 is the traceless part of T 1
0αβ̄

. Its relation to T 2 is

(T 2
αβ̄

)γδ̄ = −iT 1
0αβ̄

gγδ̄ . (3.11)

Tracing this expression with gγδ̄ and using the symmetry in the two pairs of indices of T 2,

this gives

(T 2
αβ̄

)γ
γ = −5iT 1

0αβ̄
= −igαβ̄T 1

0γ
γ = 0 . (3.12)

The last equality follows from (3.9). Therefore T 1 = 0.

It remains to show T 2 = 0 as well. An inspection of the conditions we have derived

above reveal that the only non-vanishing components are (T 2
αβ)γδ and (T 2

αβ)γ̄δ̄. The former

vanishes because of the Bianchi identity of T 3, (2.12), involving skew-symmetry in two

holomorphic and three anti-holomorphic indices, and the the relation of T 3 to T 2 in (3.6).

To continue, first observe that from (3.9) and T 1 = 0, we find that

(T 2
αγ)β̄

γ = 0 . (3.13)

Next we shall use the expression of T 1 and T 3 in terms of the fluxes F which can be found

in [11]. The condition T 1 = 0 implies that F ∧ F = 0 which in turn implies that

(T 3
MN )PQR = 1

6(∇MFNPQR −∇NFMPQR) . (3.14)

Now consider the case where all five indices are holomorphic. This component of T 3 is

subject to two additional conditions. The first follows from the Bianchi identity for the

gauge field, which states that

(T 3
[αβ1

)β2β3β4] = 1
15(∇αFβ1···β4

+ 4∇[β1
Fβ2β3β4]α) = 0 . (3.15)

The second condition follows from the relation between T 3 and T 2 in (3.6) and the trace

condition on T 2 in (3.13). It implies that

(T 3
α[β1

)β2β3β4] = 1
6(∇αFβ1···β4

+ ∇[β1
Fβ2β3β4]α) = 0 . (3.16)

Comparing (3.15) and (3.16), we deduce that ∇αFβ1···β4
= 0. From this it follows that

the T 3 component with five holomorphic indices vanishes, and this implies that (T 2
αβ)γ̄δ̄ = 0.

Therefore T 2 = 0.

As we have already mentioned a direct inspection of (3.6) reveals that all T k are

determined in terms of T 1 and T 2. Thus T k = 0 and so R = 0. Therefore, the reduced

holonomy of N = 31 backgrounds with an SU(5)-invariant normal is {1}, and so these

backgrounds are locally isometric to the maximally supersymmetric ones.

– 7 –
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4. (Spin(7) n R
8) × R-invariant normal

4.1 Integrability conditions

The null case can be investigated in a similar way. For this we use the null basis of [18]

and choose the normal spinor as

ν = 1 + e1234 . (4.1)

A basis in the space of Majorana spinors orthogonal to ν is

1 + e1234, i(1 − e1234) , i(e5 − e12345) ,

eρ +
1

3!
ερσ1σ2σ3eσ1σ2σ3

, i(eρ −
1

3!
ερσ1σ2σ3eσ1σ2σ3

) ,

eρ5 +
1

3!
ερσ1σ2σ3eσ1σ2σ35 , i(eρ5 −

1

3!
ερσ1σ2σ3eσ1σ2σ35) ,

i(eρ1ρ2
+

1

2
ερ1ρ2µ1µ2eµ1µ2

), eρ1ρ2
− 1

2
ερ1ρ2µ1µ2eµ1µ2

,

i(eρ1ρ25 +
1

2
ερ1ρ2µ1µ2eµ1µ25), eρ1ρ25 −

1

2
ερ1ρ2µ1µ2eµ1µ25 . (4.2)

For the analysis we shall present below, it is convenient to introduce a new SU(4)-covariant

basis as

θ\ = i(e5 − e12345) , θ+ = i(1 − e1234) , θ− = 1 + e1234 ,

θ−ρ =

√
2

3!
ερσ1σ2σ3eσ1σ2σ3

, θ−ρ̄ =
√

2eρ ,

θρ =

√
2

3!
ερσ1σ2σ3eσ1σ2σ35 , θρ̄ =

√
2eρ5 ,

θ−ρ̄σ̄ =
√

2eρσ , θρ̄σ̄ =
√

2eρσ5 , λ, µ, ν, ρ, σ = 1, 2, 3, 4 . (4.3)

It is then straightforward to show using (2.10) and the form bi-linears of appendix A

that

u\ = 4i(T 2)µ
µ , u− = −8

√
2(T 1)− , u+ = 2

√
2i(T 3)−µ

µ , u−ρ = 8
√

2(T 2)−ρ ,

uρ = −16(T 1)ρ , ερσ
µ̄1µ̄2uµ̄1µ̄2

= 8
√

2(T 2)ρσ , ερσ
µ̄1µ̄2u−µ̄1µ̄2

= 8(T 3)−ρσ , (4.4)

where the two-form indices of u and T k have been suppressed. In addition, we find

that (2.10) implies the following relations between the T k:

(T 1)+ = (T 1)\ = 0 ,

(T 2)+− = (T 2)+ρ = (T 2)+\ = 0 ,

(T 2)−\ = (T 1)− ,

(T 2)\ρ = −(T 1)ρ ,

(T 2)ρσ̄ =
1

4
(T 2)µ

µδρσ̄ ,

(T 2)ρσ +
1

2
ερσ

µ̄1µ̄2(T 2)µ̄1µ̄2
= 0 ,

(T 3)+−ρ = (T 1)ρ ,

(T 3)+−\ = (T 3)+\ρ = (T 3)+ρσ = (T 3)+ρσ̄ = 0 ,
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(T 3)−\ρ = −(T 2)−ρ ,

(T 3)−ρσ̄ =
1

4
(T 3)−µ

µδρσ̄ ,

(T 3)\ρσ = (T 2)ρσ ,

(T 3)\ρσ̄ =
1

4
(T 2)µ

µδρσ̄ ,

(T 3)σ1σ2σ3
= −2εσ1σ2σ3

ρ̄(T 1)ρ̄ ,

(T 3)σ1σ2ρ̄ = 2δρ̄[σ1
(T 1)σ2] ,

(T 3)−ρσ +
1

2
ερσ

µ̄1µ̄2(T 3)−µ̄1µ̄2
= 0 ,

(T 4)+−\ρ = −(T 1)ρ ,

(T 4)+−ρσ = (T 2)ρσ ,

(T 4)+−ρσ̄ =
1

4
(T 2)µ

µδρσ̄ ,

(T 4)+\ρσ = (T 4)+\ρσ̄ = (T 4)+σ1σ2σ3
= (T 4)+σ1σ2ρ̄ = 0 ,

(T 4)−\ρσ = (T 3)−ρσ ,

(T 4)−\ρσ̄ =
1

4
(T 3)−µ

µδρσ̄ ,

(T 4)−σ1σ2σ3
= 2(T 2)−ρ̄ε

ρ̄
σ1σ2σ3

,

(T 4)−σ1σ2ρ̄ = 2δρ̄[σ1
(T 2)|−|σ2] ,

(T 4)\σ1σ2σ3
= −2(T 1)ρ̄ε

ρ̄
σ1σ2σ3

,

(T 4)\σ1σ2ρ̄ = −2δρ̄[σ1
(T 1)σ2] ,

(T 4)σ1σ2σ3σ4
=

1

2
(T 2)µ

µεσ1σ2σ3σ4
,

(T 4)σ1σ2σ3ρ̄ = −3δρ̄[σ1
(T 2)σ2σ3] ,

(T 4)ρ1ρ2σ̄1σ̄2
= 0 ,

(T 5)+−\ρσ = (T 2)ρσ ,

(T 5)+−\ρσ̄ =
1

4
(T 2)µ

µδρσ̄ ,

(T 5)+−σ1σ2σ3
= 2(T 1)ρ̄ε

ρ̄
σ1σ2σ3

,

(T 5)+−σ1σ2ρ̄ = 2δρ̄[σ1
(T 1)σ2] ,

(T 5)+\σ1σ2σ3
= (T 5)+\σ1σ2ρ̄ = 0 ,

(T 5)+σ1σ2σ3σ4
= (T 5)+σ1σ2σ3ρ̄ = (T 5)+σ1σ2ρ̄1ρ̄2

= 0 ,

(T 5)−\σ1σ2σ3
= −2(T 2)−ρ̄ε

ρ̄
σ1σ2σ3

,

(T 5)−\σ1σ2ρ̄ = −2δρ̄[σ1
(T 2)|−|σ2] ,

(T 5)−σ1σ2σ3σ4
= (

1

2
(T 3)−µ

µ + 2(T 1)−)εσ1σ2σ3σ4
,

(T 5)−σ1σ2σ3ρ̄ = −3δρ̄[σ1
(T 3)|−|σ2σ3] ,

(T 5)−σ1σ2ρ̄1ρ̄2
= −2δσ1[ρ̄1

δρ̄2]σ2
(T 1)− ,

(T 5)\σ1σ2σ3σ4
=

1

2
(T 2)µ

µεσ1σ2σ3σ4
,

(T 5)\σ1σ2σ3ρ̄ = −3δρ̄[σ1
(T 2)σ2σ3] ,

(T 5)\σ1σ2ρ̄1ρ̄2
= 0 ,

(T 5)σ1σ2σ3σ4ρ̄ = 2εσ1σ2σ3σ4
(T 1)ρ̄ ,

(T 5)σ1σ2σ3ρ̄1ρ̄2
= −6δρ̄1[σ1

δσ2|ρ̄2
(T 1)σ3] . (4.5)

Observe that all components T k of the supercurvature R are determined in terms of T 1,

T 2 and T 3.
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4.2 Solving the conditions

We shall now use (2.11), (2.12) and the explicit expressions of T k in terms of the physical

fields which can be found in [11] to show that R = 0. Since all the components of R
in this case depend of T 1, T 2 and T 3, let us first show that T 1 = 0. Due to (4.5) and

the skew-symmetry of (T 1
MN )P , the only possible non-vanishing components of T 1 up to

complex conjugation are (T 1
ρ1ρ2

)ρ3
, (T 1

ρ1ρ2
)σ̄, (T 1

ρσ)−, (T 1
ρσ̄)−.

First consider the condition on T 2 in (2.12). Taking Q = \, this implies that T 1 satisfies

(T 1
ρ1ρ2

)σ = (T 1
ρ1ρ2

)σ̄ = 0, (T 1
ρ1ρ2

)− = −1
2ερ1ρ2

σ̄1σ̄2(T 1
σ̄1σ̄2

)−, (T 1
ρσ̄)− = 1

4 (T 1
λ

λ)−gρσ̄.

(4.6)

Next turn to the conditions in (2.11). From (T 2
\[−)ρσ̄] − 1

3(T 4
\N )−ρσ̄

N = 0, we find

(T 1
ρσ̄)− = −(T 1

µ
µ)−δρσ̄ , (4.7)

which implies that

(T 1
ρσ̄)− = 0 . (4.8)

In addition (T 1
ρ1ρ2

)− + 1
2 (T 3

ρ1N )ρ2−
N = 0 implies that

(T 3
ρ1λ̄

)λ̄ρ2− = −2(T 1
ρ1ρ2

)− +
1

4
(T 3

ρ1ρ2
)−µ

µ . (4.9)

Combining this result with the condition (T 2
ρ[σ)−\] − 1

3 (T 4
ρN )σ−\

N = 0, which yields

(T 3
ρ1λ̄

)λ̄ρ2− = −4(T 1
ρ1ρ2

)− +
1

4
(T 3

ρ1ρ2
)−µ

µ , (4.10)

we find (T 1
ρσ)− = 0. Hence T 1 = 0.

We now turn our attention to T 2. From (4.5) and the symmetry property in (2.12),

it follows that (T 2
MN )P+ = (T 2

P+)MN = (T 2
P\)MN = 0. Furthermore, (T 2

MN )ρσ = (T 2
ρσ)MN

are self-dual, and (T 2
MN )ρσ̄ = (T 2

ρσ̄)MN are determined in terms of the trace.

Let us first consider the case where all four indices are of SU(4) type. From (T 2
ρN )σ̄

N =

0 and (T 3
[ρ1ρ2

)σ̄1σ̄2\] = 0, we find respectively

(T 2
ρλ)σ̄

λ = 1
16gρσ̄(T 2

σ
σ)λ

λ , (T 2
ρ1ρ2

)σ̄1σ̄2
= −2(T 2

σ̄1[ρ1
)a2]σ̄2

. (4.11)

By taking the trace of the second equation, we conclude that these expressions vanish.

Hence the equations imply that (T 2
ρ1ρ2

)σ̄1σ̄2
= (T 2

ρσ̄)λδ̄ = 0. Furthermore, (T 3
[ρ1ρ2

)ρ3σ̄1\] = 0

implies that (T 2
ρσ)λδ̄ = 0. Therefore T 2 with only SU(4) indices vanishes.

Next we consider the case where one of the indices equals −. From (T 2
ρN )−

N = 0 and

(T 2
−[ρ1

)ρ2ρ3] − 1
3(T 4

−N )ρ1ρ2ρ3

N = 0, we find that

(T 2
−ρ)σ

σ = −4(T 2
ρλ)−

λ , (T 2
−[ρ1

)ρ2ρ3] = 1
12ερ1ρ2ρ3

σ̄(T 2
−σ̄)λ

λ . (4.12)

In addition, we explore the relations of T 3 which arise from (T 3
[\ρ1

)ρ2ρ3−] = 0, (T 3
[\σ̄)ρ1ρ2−] =

0, (T 2
ρ[−)σ1σ2] − 1

3(T 4
ρN )−σ1σ2

N = 0 and (T 2
ρ[−)σ̄1σ̄2] − 1

3 (T 4
ρN )−σ̄1σ̄2

N = 0 to find

(T 3
\[ρ1

)ρ2ρ3]− = 2(T 2
−[ρ1

)ρ2ρ3] ,
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(T 3
\σ̄)ρ1ρ2− = 4(T 2

−[ρ1
)ρ2]σ̄ + 2(T 2

−σ̄)ρ1ρ2
− 2(T 3

\[ρ1
)ρ2]σ̄− ,

(T 3
ρ\)−σ1σ2

= 2(T 2
ρ−)σ1σ2

− 4(T 2
ρ[σ1

)|−|σ2] − 1
2(T 2

−λ̄
)δ

δελ̄
ρσ1σ2

,

(T 3
ρ\)−σ̄1σ̄2

= 2(T 2
ρ−)σ̄1σ̄2

− 4(T 2
ρ[σ̄1

)|−|σ̄2] − 2(T 2
ρλ)−δεσ̄1σ̄2

λδ . (4.13)

From the two expressions above with three holomorphic indices it follows that

(T 2
−[ρ1

)ρ2ρ3] = 1
8ερ1ρ2ρ3

σ̄(T 2
−σ̄)λ

λ . (4.14)

Combining this with (4.12), we conclude that these expressions vanish, and therefore

(T 2
−ρ)σλ̄ = 0. Then, the definition for (T 3

\σ̄)ρ1ρ2− and its complex conjugate imply that

(T 2
−ρ)σλ = 0. Therefore T 2 with three SU(4) indices also vanishes.

The only remaining non-vanishing components are (T 2
−ρ)−σ and (T 2

−ρ)−σ̄. First, note

that (T 2
−ρ)−σ is symmetric in the interchange of ρ and σ, while in terms of F it is given by

(T 2
−ρ)−σ = (T 3

−ρ)−σ\ = 1
6∇−Fρ−σ\ , (4.15)

which is skew-symmetric in the interchange and so (T 2
−ρ)−σ = 0. Similarly, (T 2

−ρ)−σ̄ =

(T 2
−σ̄)−ρ while

(T 2
−ρ)−σ̄ = (T 3

−ρ)−σ̄\ = 1
6∇−Fρ−σ̄\ = −1

6∇−Fσ̄−ρ\ = −(T 2
−σ̄)−ρ . (4.16)

Hence this component also vanishes. Therefore we conclude that T 2 = 0.

It remains to consider T 3, and in particular the components (T 3)µν− and (T 3)µν̄−.

The vanishing of (T 3
MN )µν

N for M = −, \, ρ, ρ̄ implies that

(T 3
+−)µν− = (T 3

+\)µν− = (T 3
+ρ)µν− = (T 3

+ρ̄)µν− = 0 . (4.17)

From the vanishing of (T 4
MN )−µν

N for M = −, ρ, ρ̄, we also get

(T 3
−\)µν− = (T 3

\ρ)µν− = (T 3
\ρ̄)µν− = 0 . (4.18)

Next, note that

(T 3
−ρ)−σ̄1σ̄2

= (T 3
−σ̄1

)−σ̄2ρ =
1

4
(T 3

−σ̄1
)ρ

ρ
−gρσ̄2

, (4.19)

and on symmetrizing this expression in σ1, σ2 and taking the trace, we find (T 3
−σ̄1

)µ
µ
− = 0

and hence (T 3
−ρ)−σ̄1σ̄2

= 0.

Combining the Bianchi identity for F with

(T 3
−ρ1

)ρ2σ̄1σ̄2
= 1

6 (∇−Fρ1ρ2σ̄1σ̄2
−∇ρ1

F−ρ2σ̄1σ̄2
) = 0 , (4.20)

we find that ∇ρ1
F−ρ2σ̄1σ̄2

= 0 and hence (T 3
ρ1ρ2

)−σ̄1σ̄2
vanishes. (T 3

ρ1ρ2
)σ1σ2− = 0 due to the

duality condition in (4.5). Finally, the Bianchi identity for F together with

(T 3
−ρ)λ1λ2σ̄ = 1

6(∇−Fρλ1λ2σ̄ −∇ρF−λ1λ2σ̄) = 0 ,

(T 3
σ̄−)ρλ1λ2

= 1
6(∇σ̄F−ρλ1λ2

−∇−Fσ̄ρλ1λ2
) = 0 , (4.21)
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imply that ∇ρF−µνσ̄ = ∇σ̄F−ρµν = 0, and hence (T 3
ρσ̄)−λ1λ2

= 0. Hence (T 3)µν− = 0.

In order to show that the remaining components of (T 3)µν̄− also vanish, note that

(T 3
MN )µν̄

N = 0 for M = −, \, ρ, ρ̄ in (2.11) implies

(T 3
+−)µν̄− = (T 3

+\)µν̄− = (T 3
+ρ)µν̄− = (T 3

+ρ̄)µν̄− = 0 , (4.22)

and the vanishing of (T 4
MN )−µν̄

N for M = −, ρ implies

(T 3
−\)µν̄− = (T 3

\ρ)µν̄− = 0 . (4.23)

Next, as we have shown that ∇ρF−µνσ̄ = 0, this implies (T 3
ρ1ρ2

)µν̄− = 0, and hence

(T 3
ρ̄1 ρ̄2

)µν̄− = 0. Also, (T 3
−σ̄1

)−σ̄2ρ = 0 from (4.19). Lastly, by taking traces of the constraint

(T 3
[ρ1ρ̄2

)σ1σ̄2−] = 0 and using (T 3
ρ1σ1

)ρ̄2σ̄2− = (T 3
ρ̄2σ̄2

)ρ1σ1− = 0, we find (T 3
ρ1ρ̄2

)σ1σ̄2− = 0.

Hence (T 3)µν̄− = 0. These conditions are then sufficient to show that T 3 = 0.

As we have already mentioned, T k are determined from T 1, T 2 and T 3. Since T 1 =

T 2 = T 3 = 0, T k = 0 and so R = 0. Therefore, the reduced holonomy of N = 31 back-

grounds with a (Spin(7) n R
8) × R-invariant normal is {1}, and so these backgrounds are

locally isometric to maximally supersymmetric ones. Combining this result with that of the

previous section section, we conclude that all N = 31 backgrounds of eleven-dimensional

supergravity admit locally an additional Killing spinor and so they are maximally super-

symmetric.

5. N = 15 in type I supergravities

The non-existence of N = 15 supersymmetric backgrounds in type I supergravities can be

easily seen by combining the results of [3] and [17]. In particular, the normal to the 15

Killing spinors has stability subgroup Spin(7) n R
8. So there is only one case to consider.

It is convenient to choose

ν = e2 − e134 . (5.1)

Then combining the conditions of the backgrounds with Killing spinors that have stability

subgroup R
8 and those that have stability subgroup G2 in [17], one finds that the dilaton

Φ is constant and the non-vanishing components of H are H−ij, where i, j = 1, . . . 8. The

dilatino Killing spinor equation becomes

H−ijΓ
−ijεr = 0 . (5.2)

The existence of a non-trivial solution for this equation is equivalent to requiring that there

are seven linearly independent spinors in the chiral or anti-chiral representation of Spin(8),

depending on conventions, with a non-trivial stability subgroup. This is not the case and

so H = 0. Similarly, the integrability condition of the gravitino Killing spinor equation

implies that the supercovariant curvature of the connection with torsion vanishes, R̂ = 0.

Since H = 0, R̂ = R = 0, the Riemann curvature of the spacetime vanishes. The rest of the

fluxes, e.g. gauge field strengths, can also be shown to vanish. Therefore, the spacetime is

locally isometric to Minkowski space with constant dilaton, and vanishing three-form and

gauge field fluxes.
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6. Concluding remarks

We have shown that eleven-dimensional supergravity backgrounds with 31 supersymmetries

are locally isometric to maximally supersymmetric ones. This result together with that

of [11] (locally) classify the supersymmetric backgrounds of eleven-dimensional supergravity

with N = 31 and N = 32 supersymmetries. The Killing spinor equations of eleven-

dimensional supergravity for the N = 1 backgrounds have been solved in [23]. So far,

these are the only three cases in eleven-dimensions that the geometry of the backgrounds

has been identified for a given N . Furthermore, the result of this paper together with

those obtained in [3] and [4] rule out the existence of N = 31 solutions in eleven- and type

II ten-dimensional supergravities. In addition, a straightforward argument can rule out

the existence of N = 15 backgrounds in type I ten-dimensional supergravities. In lower-

dimensions, a similar conclusion has been reached for the cases that have been investigated

in [5]. There are many more lower dimensional cases that can be explored.

It is clear from the cases that have been examined so far that backgrounds with Nmax−1

number of supersymmetries are severely restricted. This raises the possibility that there

are much less supersymmetric backgrounds in ten and eleven dimensions than those that

may have been expected from the holonomy argument of [8 – 10, 19]. In the proof that the

N = 31 eleven-dimensional backgrounds admit 32 supersymmetries, we have used both

the conditions that arise from the Killing spinor equations as well as field equations and

Bianchi identities. It has been the field equations and Bianchi identities that enforced the

condition that the supercovariant curvature vanishes — the conditions arising from the

Killing spinor equations were not sufficient. Dynamical information has been necessary to

construct the proof. This is unlike the type II theories where the Killing spinor equations

were sufficient to establish the result.

Another property of the N = 31 backgrounds in eleven or ten dimensions is that the

stability subgroup of Killing spinors in Spin(10, 1) or Spin(9, 1) is trivial, i.e. stab(ε) = {1}.
These are the first examples, other than those with maximal supersymmetry, that have

this property. It is encouraging that it turned out to be that such backgrounds are in fact

maximally supersymmetric. This may suggest that even backgrounds with a small number

of Killing spinors but with a trivial stability subgroup in the gauge group of the Killing

spinor equations are severely restricted, though it is possible that such new backgrounds

exist. If this is the case, the classification of supersymmetric backgrounds in ten and

eleven dimensions may be somewhat simplified. It would be worth investigating more such

examples in the future.
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A. Spacetime form spinor bi-linears

In the computation of the conditions that arise from the integrability condition Rεr = 0,

we have used the form spinor bi-linears of the SU(5)-invariant normal spinor ν and a basis

θr, (3.4), that spans the 31 Killing spinors. These bi-linears are defined as

τ r =
1

k!
B(θr,ΓA1A2...Ak

ν) eA1 ∧ eA2 ∧ · · · ∧ eAk . (A.1)

In particular the non-vanishing components of the one-forms are

τβ
α = 2δβ

α , τ0
0 = −2 . (A.2)

The two-forms are

τ
β
0α = −2iδβ

α , τ0
αβ̄

= −2igαβ̄ , τ
γδ
αβ = 4

√
2iδ

γδ
[αβ] . (A.3)

The three-forms are

τ
γδ
0αβ = −4

√
2δγδ

[αβ] , τ ᾱβ̄
γ1γ2γ3

= 4iεγ1γ2γ3

ᾱβ̄ , τ δ
αβγ̄ = −4δδ

[αgβ]γ̄ . (A.4)

The four-forms are

τ
ᾱβ̄
0γ1γ2γ3

= 4εγ1γ2γ3

ᾱβ̄ , τα
0β1β2γ̄ = 4iδα

[β1
gβ2]γ̄ , τ ᾱ

β1β2β3β4
= 4

√
2εβ1β2β3β4

ᾱ ,

τ
αβ
γ1γ2γ3γ̄4

= −12
√

2iδαβ
[γ1γ2

gγ3]γ̄4
, (A.5)

and the five-forms are

τ ᾱ
0β1β2β3β4

= 4
√

2iεb1β2β3β4

ᾱ , τ
αβ
0γ1γ2γ3γ̄4

= 12
√

2δ
αβ
[γ1γ2

gγ3]γ̄4
, τ0

0αβγ̄δ̄
= 4gα[γ̄g|β|δ̄] ,

τ0
α1α2α3α4α5

= −4
√

2iεα1α2α3α4α5
, τ ᾱ1ᾱ2

β1β2β3β4γ̄ = 8iεβ1β2β3β4

[ᾱ1δ
ᾱ2]
γ̄ ,

τα
β1β2β3γ̄1γ̄2

= −12δα
[β1

gβ2|γ̄1|gβ3]γ̄2
, (A.6)

where we have used δ
β1β2

[α1α2] = δ
β1

[α1
δ
β2

α2].

Similarly, in the computation of the integrability conditions of N = 31 backgrounds

with a (Spin(7) n R
8) × R-invariant normal spinor ν, we have used the spacetime form

spinor bi-linears of ν with the elements of the spinor basis (4.3). In particular, we find that

the one-forms are

τ−
− = −2

√
2, τρ

σ = −2δρ
σ , (A.7)

the two-forms are

τ \
ρσ̄ = 2iδρσ̄ , τ−

−\ = 2
√

2, τ−ρ
−σ = −2

√
2δρ

σ ,

τρ
\σ = −2δρ

σ , τ ρ̄σ̄
µ̄1µ̄2

= 4
√

2δρ̄σ̄
µ̄1µ̄2

, τ ρ̄σ̄
µ1µ2

= −2
√

2ερ̄σ̄
µ1µ2

, (A.8)

the three-forms are

τ \
\ρσ̄ = −2iδρσ̄ , τ+

−ρσ̄ = −2
√

2iδρσ̄ , τ−ρ
−\σ = −2

√
2δρ

σ ,

τρ
+−σ = −2δρ

σ, τρ
σ1σ2λ̄ = −4δλ̄[σ1

δ
ρ
σ2], τρ

σ̄1σ̄2σ̄3
= −4ερ

σ̄1σ̄2σ̄3
,
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τ−ρ̄σ̄
−µ̄1µ̄2

= −8δρ̄σ̄
µ̄1µ̄2

, τ−ρ̄σ̄
−µ1µ2

= 4ερ̄σ̄
µ1µ2

,

τ ρ̄σ̄
\µ̄1µ̄2

= −4
√

2δρ̄σ̄
µ̄1µ̄2

, τ ρ̄σ̄
\µ1µ2

= 2
√

2ερ̄σ̄
µ1µ2

, (A.9)

the four-forms are

τ \
+−ρσ̄ = 2iδρσ̄ , τ \

ρ1ρ2ρ3ρ4
= 4iερ1ρ2ρ3ρ4

, τ+
−\ρσ̄ = 2

√
2iδρσ̄ ,

τ−ρ
−σ1σ2λ̄ = −4

√
2δλ̄[σ1

δ
ρ
σ2], τ−ρ

−σ̄1σ̄2σ̄3
= −4

√
2ερ

σ̄1σ̄2σ̄3
,

τρ
+−\σ = −2δρ

σ , τρ
\σ1σ2λ̄ = −4δλ̄[σ1

δ
ρ
σ2], τρ

\σ̄1σ̄2σ̄3
=−4ερ

σ̄1σ̄2σ̄3
,

τ−ρ̄σ̄
−\µ̄1µ̄2

= 8δρ̄σ̄
µ̄1µ̄2

, τ−ρ̄σ̄
−\µ1µ2

= −4ερ̄σ̄
µ1µ2

,

τ ρ̄σ̄
+−µ̄1µ̄2

= 4
√

2δρ̄σ̄
µ̄1µ̄2

, τ ρ̄σ̄
+−µ1µ2

= −2
√

2ερ̄σ̄
µ1µ2

,

τ ρ̄σ̄
σ̄1σ̄2σ̄3λ = −12

√
2δλ[σ̄1

δ
ρ̄
σ̄2

δσ̄
σ̄3], τ ρ̄σ̄

λ̄σ1σ2σ3
= 4

√
2εσ1σ2σ3

[ρ̄δ
σ̄]

λ̄
,

(A.10)

and the five-forms are

\
+−\ρσ̄ = −2iδρσ̄ , τ \

\σ1σ2σ3σ4
= −4iεσ1σ2σ3σ4

,

τ−
−σ1σ2ρ̄1ρ̄2

= 4
√

2δσ1[ρ̄1
δρ̄2]σ2

, τ+
−σ1σ2σ3σ4

= −4
√

2iεσ1σ2σ3σ4
,

τ−
−σ1σ2σ3σ4

= −4
√

2εσ1σ2σ3σ4
,

τ−ρ
−\σ1σ2λ̄ = −4

√
2δλ̄[σ1

δ
ρ
σ2], τ−ρ

−\σ̄1σ̄2σ̄3
= −4

√
2ερ

σ̄1σ̄2σ̄3
,

τρ
+−σ1σ2λ̄ = −4δλ̄[σ1

δ
ρ
σ2], τρ

+−σ̄1σ̄2σ̄3
= −4ερ

σ̄1σ̄2σ̄3
,

τρ
σ1σ2σ3ρ̄1ρ̄2

= 12δρ̄1[σ1
δσ2|ρ̄2|δ

ρ
σ3], τρ

λσ̄1σ̄2σ̄3σ̄4
= −4δρ

λεσ̄1σ̄2σ̄3σ̄4
,

τ−ρ̄σ̄
−σ̄1σ̄2σ̄3λ = 24δλ[σ̄1

δ
ρ̄
σ̄2

δσ̄
σ̄3], τ−ρ̄σ̄

−λ̄σ1σ2σ3
= −8εσ1σ2σ3

[ρ̄δ
σ̄]

λ̄
,

τ ρ̄σ̄
+−\µ̄1µ̄2

= −4
√

2δ
ρ̄σ̄
µ̄1µ̄2

, τ ρ̄σ̄
+−\µ1µ2

= 2
√

2ερ̄σ̄
µ1µ2

,

τ ρ̄σ̄
\σ̄1σ̄2σ̄3λ = 12

√
2δλ[σ̄1

δ
ρ̄
σ̄2

δσ̄
σ̄3], τ ρ̄σ̄

\λ̄σ1σ2σ3
= −4

√
2εσ1σ2σ3

[ρ̄δ
σ̄]

λ̄
. (A.11)

The components of τ ρ̄ and τ−ρ̄ are obtained from the above expressions by complex con-

jugation.
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