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Abstract 

We give a classification of all multiple intersections of D-branes in ten dimensions and M-branes 
in eleven dimensions that correspond to threshold BPS bound states. The residual supersymmetry 
of these composite branes is determined. By dimensional reduction composite p-branes in lower 
dimensions can be constructed. We emphasize in dimensions D 2 2 those solutions which involve 
a single scalar and depend on a single harmonic function. For these extremal branes we obtain the 
strength of the coupling between the scalar and the gauge field. In particular, we give a D-brane 
and M-brane interpretation of extreme p-branes in two, three and four dimensions. 
@ 1997 Elsevier Science B.V. 
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1. Introduction 

Classical solutions of the low-energy effective supergravity action have played a crn- 

cial role in the unification of string theories. This unification, in terms of the conjectured 

M-theory [ 1,2], has led to a renewed interest in D = 11 supergravity. Since D - 11 

supergravity is the low-energy limit of M-theory, its classical solutions, and their de- 

scendants which can be obtained in lower dimensions by dimensional reduction, play a 

particularly important role. The basic eleven-dimensional extended objects (Mp-branes 

or, shortly, M-branes) are the M2-brane [ 31 and the MS-brane [ 41. 

In ten dimensions a class of solutions of Type IIA/IIB string theory, satisfying Dirich- 

let boundary conditions in certain directions, has received much attention [ 5,6] _ These 

solutions are called Dirichlet p-branes or shortly Dp-branes (or just D-branes). The 

charge of the Dp-branes is carried by a Ramond-Ramond gauge field. Dp-branes exist 

for all values of 0 < p 6 9 and are all related by T-duality [ 6-101. 

0550-3213/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved. 
PZISO550-3213(97)00151-X 
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Both the M-brane and the D-brane solutions are characterized by a function H which 

depends only on the coordinates transverse to the brane, and is harmonic on this trans- 

verse space. This suggests that the M-brane and D-brane solutions are related, and indeed 

one finds that direct dimensional  reduction of  the M2-brane and double-dimensional  re- 

duction o f  the M5-brane in D = 11 leads to the D2- and D4-branes in I IA supergravity. 

It is natural to consider solutions that correspond to intersections of  D-branes and 

M-branes.  This was first done in [ 11 ] where certain solutions occurring in [4] were 

interpreted as intersections of  M-branes. Soon after, these results were generalized both 

for M-branes [ 12-17] as well as D-branes [ 12,18,14,20]. In the latter case the solutions 

correspond to bound states of  D-branes [6,19].  

Under  certain condit ions the force between two M-branes or D-branes vanishes [21] ,  

and composi te  configurations of  branes can be static solutions to the equations of  

motion. The condit ions for the existence of  such configurations have been formulated. 

In particular, the so-called harmonic function rule [12] prescribes how products of  

powers o f  the harmonic functions Hi of the N intersecting branes must occur in the 

composi te  solution. In particular, it implies that i f  one of  the Hi is set equal to one, a 

solution with N - 1 intersecting branes is obtained. 

For a more  detai led analysis of  configurations of  two branes, we assume that the 

powers of  harmonic functions are as stated by the harmonic function rule, and then 

split  the coordinates in three parts: the overall world-volume coordinates ( d ) ,  which are 

common to the two branes, the overall transverse coordinates ( t ) ,  and the remainder, 

which are called relative transverse (n ) ,  and are transverse to only one of  the two branes. 

Three kinds of  intersections of  a p l -  and a p2-brane are possible, with the fol lowing 

condit ions,  valid for D-branes in D = 10 and the basic M-branes in D = 11, on H1 and 

/-/2 [6,12,14,21,18] : 

(1)  Both Hi depend only on the t overall transverse coordinates. Then in D = 10 we 

must  have n = 4 (i.e. 4 relative transverse direct ions) ,  while in D = 11 the only 

possibi l i t ies  are (012, 2) and (315, 5) (n  = 4) ,  and ( 1 [2, 5) (n  = 5) .  1 

(2)  One Hi depends on the overall transverse coordinates, the other on the relative 

coordinates.  In this case the condit ions on n are as in case (1) .  

(3)  Both Hi depend on the relative coordinates. Then in D = 10 and D = 11 we must 

have n = 8, which in D = 11 can only be realized as (115,5) [14] .  

In case more  than two branes intersect, the above rules must apply for each pair of  

branes in the composite  system. As we will  see, this basic requirement enormously 

restricts the number of  al lowed mult iple  intersections. 

The aim of  this paper is to give a systematic and complete classification of  intersecting 

branes in ten and eleven dimensions satisfying the above conditions. This paper will  

mainly concentrate on the intersecting branes that satisfy condition (1 ) .  The ones that 

satisfy condit ions (2)  or (3)  are separately discussed in an Appendix,  since their status 

We denote the intersection of a Pl- and a pz-brane over a common q-brane with d = q + 1 by (qIPl,P2). 
We do not include the case n = 0 (Pl = P2), for which the intersection is described by the sum of H1 and 
/42 (multiple branes of the same type with different locations). 
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in string theory is less clear. 
Note that the harmonic function rule implies restrictions on the form of the metric 

of the solution, and that therefore our analysis does not exclude the existence of other 
(static) multiple brane configurations. In particular, we only consider intersections where 
each participating brane corresponds to an independent harmonic function in the solution. 
Such solutions correspond to threshold BPS bound states, i.e. they satisfy the no force 
condition. To summarize, in this paper we only consider solutions corresponding to 

threshold BPS bound states. We do n o t  consider the following solutions (see, however, 

Section 5) : 
• D = 10 intersections that involve NS-NS strings, five-branes and/or their T-duals. 

Neither do we consider in D=I  1 intersections that involve a gravitational wave 
(boosted M-branes [22] ) and/or its magnetic partner. 

• Solutions corresponding to non-threshold BPS bound states such as the D = 10 
D-brane bound states with n = 2 or 6 [6], the D = 10 ( q l , q 2 )  string solutions 
of [23] and the D = 10 (D = 11) solution given in Ref. [24] (Ref. [25]) that 
interpolates between a 2-brane and a 5-brane. 

Our main conclusions are that under condition (1) there are three inequivalent ways 
of eight intersecting p-branes, both in D = 10 and D = 11. If intersections with n = 8 

are allowed as well, a ninth brane can be added to these configurations. 
A single M- or D-brane preserves half the supersymmetry of the corresponding su- 

pergravity theory (which has 32 real supersymmetry generators). As a general rule, a 

configuration of N intersecting branes preserves at  leas t  1 / 2  N of the maximal super- 
symmetry [6,12]. In our analysis we will see when and how the "at least" becomes 
relevant: in some cases an additional brane can be added to a composite system without 

additional breaking of supersymmetry ( [ 19,13,14] ). Our maximal intersecting configu- 
rations with eight branes preserve 1/32 or 1/16 of the maximal supersymmetry, for the 
intersection with nine branes this is 1/32. 

The conditions (1 ) - (3 )  follow from the gauge-field equation of motion, and so 
are a p r i o r i  necessary conditions. The Einstein equation, and, in D = 10, the dilaton 

equation of motion, need to be checked. In all cases considered in this paper we find 
that the full equations of motion are satisfied by multiple intersections satisfying the 
above conditions. It is an interesting fact that all multiple configurations based on ( 1) -  
(3) preserve at least 1/32 of the maximal supersymmetry. The reason must be that the 
condition of vanishing force between branes is implied by supersymmetry. If this is true, 
then on the one hand it should be possible to derive the conditions (1 ) - (3 )  from the 
requirement of supersymmetry, while on the other hand preservation of supersymmetry 
should imply the complete equations of motion. However, we have not proved this. 

The organisation of this paper is as follows. In the body of the paper we will 

extensively discuss case (1) of the above conditions: n = 4, 5 and dependence on the 
overall transverse coordinates. We will do this for D = 10 in Section 2, and for D = 11 
in Section 3. In Section 4 we discuss some aspects of the reduction of our composite 
solutions to lower dimensions, with emphasis on extreme p-branes in two, three and 
four dimensions. Further remarks, in particular on the inclusion of NS-NS branes and/or 
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non- th resho ld  B P S  bound  states, are made  in Sect ion 5. Expl ic i t  representat ions o f  the 

solu t ions  wi th  m a x i m u m  numbers  o f  intersect ing branes are given in Appendices  A 

and B for  D = 10 and D -- 11, respectively.  In Append ix  C we  discuss the addi t ional  

poss ib i l i t ies  wh ich  arise f rom the cases ( 2 ) ,  (3 )  o f  the above condit ions.  

2. Intersections of  D-branes in ten dimensions 

The s ingle  e lementary  Dir ich le t  p -b rane  solut ion in the string f rame in ten d imens ions  

is g iven by the fo l lowing  metr ic ,  di la ton and gauge  field: 2 

d s 2 = g p l / 2  dsp+ 1 2  _ H;1/2 dS2_p, 

e a4" = (Hp) -½(p-3) , Fm...pi = OiHp 1, (1)  

where  kip is a ha rmonic  func t ion  which  depends  on the 9 - p t ransverse coordinates.  3 
2 The  l ine e l emen t  dSp+ 1 contains  the t ime  coordina te  t = x °. 

T-dua l i ty  t ransforms a p -b rane  into a ( p  ÷ 1) -brane  i f  kip is independent  o f  one  o f  

the t ransverse  coordinates ,  say x. The  duali ty rule  for the metr ic  is g iven by 

gxx = 1/gxx, (2 )  

so that a t ransverse d i rec t ion  gets dual ized  to a wor ld -vo lume  direct ion.  The  other  rules 

o f  T-dua l i ty  can be found  in [27 ,10] .  It is in pr inc ip le  poss ible  to pe r fo rm T-dual i ty  

in the oppos i te  d i rec t ion  and change  a wor ld -vo lume  coordinate  into a t ransverse one.  

However ,  this is a "dangerous"  T-duali ty,  s ince we  have to suppose that the ha rmonic  

func t ion  after dual iza t ion depends  on the direct ion in which  we  have dual ized  and it  is 

not  guaranteed that the result  is still a solut ion o f  the equat ions  o f  mot ion .  In this paper  

we  wil l  pe r fo rm  on ly  "safe"  T-dual i ty  t ransformations.  

It  is conven ien t  to represent  every coord ina te  that corresponds to a w o r l d - v o l u m e  

di rec t ion  by × and every  direct ion transverse to the brahe by - .  We thus obtain  the 

fo l l owing  representa t ion o f  the met r ic  o f  a D-brane  solut ion:  

9-p  
,, A 

ds z = x  x . . .  x - - . . .  -- ' .  (3 )  
• I 

p + l  

It is easy to see that act ing wi th  a "safe"  T-dual i ty  on this metr ic ,  a - changes  into a 

x .  

2 We use here the basis of RR gauge fields that occur naturally in the Wess-Zumino terms of the D-brane 
actions [26]. In this basis the Chern-Simons terms in the curvatures for the RR gauge fields always contain 
an NS-NS 3-form curvature. These CS terms vanish for the class of solutions we are considering in this paper. 

3 So far we used a notation where the subscript i on the harmonic function indicated the ith intersecting 
D-brane. Sometimes, however, like here, it is more convenient to use a notation where the subscript i on the 
harmonic function indicates the number p of the corresponding p-brane. It should be clear from the context 
which of the notations is used. 
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The ansatz we use to describe intersecting D-branes follows from the harmonic func- 

tion rule: the metric is diagonal and every dx  2 gets multiplied by a factor which is a 

product of the powers of the harmonic functions involved in the intersection. D-branes 

that have the coordinate x as a world-volume direction contribute a factor 4 H -1/2 and 

the ones that have x as a transverse direction contribute H 1/2. The  dilaton is given by 

the product of the dilaton expressions for each separate brahe and we have a gauge field 

of the form given in (1) for every D-brane in the intersection. 

As an example we give the expression for the metric and dilaton of a (p + r ) -brane 

intersecting with a (p + s)-brane over a p-brane, i.e. a (PIP + r , p  + s) configuration: 

--1/2 2 _ _  ( H p + r ) ' / 2 d s :  

- - (Hp+~Hp+s) ds9_p_r_ s , ( 4 )  ,,Hp+~ / ds~ 1/2 2 

e2~ b = e - ½ ( p + r - 3 )  e -½(p+s -3 )  . 

In this case d = p + l ,  n = r + s  and t = 9 - p - r - s .  I n t h i s  section we will only 

consider intersections that satisfy condition (1) of the Introduction, the other two cases 

will be discussed in Appendix C. For such intersections, the two harmonic functions 

depend on the t overall transverse coordinates, and we must have n -- 4 in order that 

the intersecting configuration is a solution to the equations of motion. The expressions 

for the gauge fields for this case are given by 

Fo...pl...ri = OiHplr ,  fo...pl...si = OiHpls . (5) 

Using the notation of (3) we can rewrite the general N -- 2 intersection given in (4) .  

For example, a possible two-intersection is given by 

x x x x x . . . . .  :H1 
ds  2 = x . . . . . . . . .  : H2. (6) 

X n  X t 

This is a (010, 4)-solution, i.e. a 0-brane lying in a 4-brahe, with d = 1, n = 4, t = 5. 

The harmonic functions Hi both depend on the coordinates xt. 

In an intersection such as (6) T-duality acts on a column, changing every × in a - 

and vice versa. If  we act with T-duality on the relative transverse directions and on the 

overall transverse direction we recover the other T-dual solutions with n = 4 relative 

transverse directions given in [18,14]. Clearly n, the number of relative transverse 

directions, is a T-invariant quantity. It is also clear that (6) represents the complete 

N = 2 n = 4 family, since all other members can be obtained from it by "safe" T-duality 

transformations. For the same reason we can limit ourselves, for arbitrary N, to those 

intersections with d = 1 (intersections over a 0-brane) .  

4 These factors are given for the string frame. 
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When adding further D-branes to (6 ) ,  in the form of  horizontal lines with x ' s  and 

- ' s ,  we need to have n = 4 (four  different entries of  x or - )  for every pair  in the 

intersection. To streamline the construction, it  is useful to characterize an intersection by 

the contents of  the columns (components  of  the metric)  corresponding to the relative 

transverse coordinates.  For  an N-intersection we can, by using T-duality, bring each 

column in a form such that no more than [ N / 2 ]  × ' s  are present. Such columns are the 

"building blocks" of  the intersection. Given N, there are (N) building blocks with k 

×'S. 

In an N-intersect ion ( N  ~> 2) there are (N) intersecting pairs. The total number 

of  differences between × and - in the N-intersection is therefore equal to 4 ( ~ ) .  A 

column with k x ' s  contributes k(N - k) differences. Let n~ be the number of  building 

blocks with k × ' s .  Then we must have 

IN~2] 
~ k ( N - k ) n k = 4  ( N ) ,  
k=l 

(7) 

with y~,~ nk < 9. Given N, this is an equation for the ng. 

Let us give a few examples. For N = 2 there is only one type of  building block with 

k = 1. Eq. (7)  for this case reduces to the equation nl = 4 which is condit ion (1)  of  

the Introduction.  For  N = 3 there is again only one type of  building block with k = 1 

and we find nl = 6. For N = 4, there are two types of  building blocks, with k = 1 

and with k = 2. Eq. (7)  reduces to 3nl + 4ne = 24 which has three solutions namely 

( n l , n 2 )  = ( 8 , 0 ) ,  ( 4 , 3 )  and ( 0 , 6 ) .  Finally, for N = 5 there are again two types of  

building blocks with k = 1 ,2  and we find 4nl ÷ 6n2 = 40 leading to two solutions given 

by ( h i , h e )  = ( 4 , 4 )  and ( 1 , 6 ) .  From now on, we will use the numbers nk to label 

solutions. Note that the remaining T-duali ty and the interchange of  columns and /o r  

rows in the representation of  the metric (corresponding to a relabeling of  the space-time 

coordinates or the intersecting branes) ,  do not change the nk. 
Clearly, (7)  is only a necessary condit ion for the existence of  a solution. Given a set 

of  nk allowed by (7 ) ,  it  is not clear that one can actually realize such a solution in terms 

of  the available building blocks and consistent with condition (1)  of  the Introduction. 

In practice, we have found that such a realization is possible only in a small number 

of  cases. In the actual construction it is not always useful to use only building blocks 

with k ~ [ N / 2 ] .  Instead, it  is convenient to start the N-intersection with a 0-brane. 

Since n = 4, all other branes in the intersection must then be 4-branes. We find that 

for N = 2 . . . . .  5 all configurations that satisfy the consistency condition (7)  actually 

satisfy the stronger condit ion (1)  of  the Introduction for each intersection. However, 

for N = 6, the (n l ,  n2, n3) = ( 3 , 0 ,  5) configuration does not survive. We have repeated 

this analysis until we reach N = 8 with three different configurations. At  this point, our 

procedure stops. Al though (7)  has solutions for N = 9, it turns out to be impossible  

to add a ninth brane in such a way that it has n = 4 relative transverse directions with 

all other eight  D-branes. An overview of  the different intersections and their relations is 

given in Fig. 1, the explici t  form of  the three 8-intersections is given in Appendix A. 
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A crucial role in the classification given in Fig. 1 is p layed by the observation that 

up to T-dual i ty  and interchanges of  rows and /o r  columns there is a unique D-brane 

configuration that realizes the numbers (nl,n2 . . . .  ) obtained from (7)  and given in 

Fig. 1. So far, we have not been able to give a general proof  of  this fact. Instead, we 

checked it by brute force in a case by case analysis. 

As we mentioned in the Introduction,  at this stage one should still check the Einstein 

equation and the dilaton equation of  motion. We have checked these for the three N = 8 

configurations using the computer. This implies that the intersections with N ~> 5 are 

also solutions. For  lower N the number t of  overall transverse coordinates increases, 

so that the harmonic functions can depend on more coordinates. We checked that the 

equations of  mot ion indeed allow this. 

Let us now consider  supersymmetry. A single D-brane has half  of  its supersymmetry 

unbroken, since the supersymmetry transformations for the Kil l ing spinor in the string 

frame 

8 ~  = 0 ~ e -  1 ab ( - - )P  e ~ F ~,~l...~p+z,, ~l "4°)tz "l/abe -1- 8 ( p  + 2) [ m-..~p+2~ z~Z~(p) = 0 ,  

3 -- p e ~ F ~,ut...~p+2 I t3A='I '~(O/~qS)e+4(p+2) ! m...~p+2z e(p) = 0 ,  (8)  

for the D-brane yield 

~- + "Y01...p e}p) = 0 .  (9)  

Eq. (9)  defines a project ion operator on e that breaks half  o f  the supersymmetry. For 

the I IA  cases ( p  even) we have e}p) = e for p = 0, 4, 8, e}p) = Tile for p = 2, 6; for IIB 

( p o d d )  e(p)t = i e f o r p = - l , 3 , 7 ,  e } p ) = i e * f o r p = l , 5 ,  w h i l e a l w a y s e = H - U S e o ,  
for constant e0. It is known [6,18] that a configuration o f  two intersecting D-branes 

can only be supersymmetric  (keeping 1 /4  o f  maximal  supersymmetry)  i f  they intersect 

in such a way that there are n = 4 or eight relative transverse directions, exactly the 

condit ion necessary to be also a solution of  the equations of  motion. 

Adding  more  D-branes to the composite  system, implies that more projection operators 

are introduced. Each t ime we add a new projection operator, half  of  the remaining 

supersymmetry gets broken. However, sometimes it is possible  to add a D-brane in such 

a way that its project ion operator is not independent,  but given by a product  of  previous 

operators 5 [19,13,14].  In that case no additional supersymmetry generator is broken. 

In Fig. 1 we see this happens for example in the N = 4 intersection. For N = 3 we have 

one 0-brane and two 4-branes which preserve 1/8 of  the supersymmetry because of  the 

three independent  project ion operators 

(1 + y 0 ) e = 0 ,  

(1 + ~/01234)e = 0 ,  (10) 

5 A similar mechanism has been observed in lower dimensions, where p-brane solutions with different 
numbers of participating field strengths preserve the same amount of supersymmetry [28]. 
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N = 8  

N = 7  

N = 6  

N = 5  

N = 4  

N = 3  

N = 2  

N = I  

(0,4,0, 4)a/a2 ] [ (1,0,7,0)1/32 ~ ~ : [  

I I 

I 

I 

Fig. l. D-brahe intersections with n = 4 in ten dimensions: the numbers (nl ,n2 . . . .  ) label the number of 
times a building block with (1,2 . . . .  ) world-volume directions is used. The subscript in the figure indicates 
the amount of supersymmetry preserved in each solution. The number N indicates the number of independent 
harmonics. The lines between solutions indicate how one configuration follows from another by adding (or 
deleting) a harmonic function. The configuration (0,0,0,7) cannot be extended to eleven dimensions in terms 
of (non-boosted) 2- and 5-branes only. 

(1 + '~01256)E =0 .  

From Fig. 1 we see that there are three different ways to add a fourth brane. Two of them 
break an extra half of  the remaining supersymmetry (configurations (8,0) and (4 ,3)) ,  
since in these cases the new brane introduces an independent projection operator. The 
third way (corresponding to configuration (0,6))  is by adding a 4-brane oriented in 
such a way that its projection operator 

(1 -q- 'Y03456) ~- = 0 (11) 

is exactly the product of the previous three operators (10).  In this way no extra condi- 
tions on the Killing spinor arise. 

The construction of projection operators for supersymmetry is another way of building 
up Fig. 1. Apparently supersymmetry and the equations of motion go hand in hand: 
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supersymmetry protects the stability of a configuration and vice versa, all stable solutions 
are supersymmetric. 6 The amount of unbroken supersymmetry of each configuration can 

be found in Fig. 1. 
One N = 8 solution in Fig. 1 is special. By using T-duality it cannot be expressed in 

terms of 2- and 4-branes only, and therefore it cannot be lifted to eleven dimensions as 
an intersection of (non-boosted) M-branes. It is the solution (0, 0, 0, 7), indicated by a 
grey box in Fig. 1. We will discuss this solution in the next section. 

3. Intersections of  M-branes in eleven dimensions 

The basic solutions in D = 11 are the M2-brane solution [ 3 ] 

ds2,11 = H 2  2/3 ds2 - 112" 1/3 as2, 

Fo12i - tg//r/2 1 , ( 1 2 )  

and the M5-brane solution 7 [4] 

ds2,11 = H 5  1/3 d s 2 -  *'5ir42/3 dS2' 

F012345 i = cgin5 1 , (13) 

where //2 and //5 are harmonic functions on the eight- and five-dimensional space 
transverse to the brahe, respectively. As in the previous section, we will construct 
all multiple intersections satisfying condition (1) in the Introduction, and obtain their 
residual supersymmetry. As stated in the Introduction, each pair of M-branes in a 
composite configuration must be (012,2), (315,5) (n = 4) or (112,5) (n = 5) [11,12]. 

We use the same representation as in the previous chapter: × for the world-volume 
coordinates and - for the transverse coordinates. The three allowed N = 2 intersections 
of M-branes can therefore be represented as: s 

(0 ]2 ,2 ) :  { x  x x_ x x x i i - i - i (14) 

{xlx  (112,5) : (15) 
X X X X X 

{× × × × ×× 
(3 [5 ,5 ) :  (16) 

X X X X - - - -  X 

6 The procedure for constructing all independent projection operators for ten-dimensional supersymmetry 
resembles the procedure for constructing the independent central charges of a supersymmetry algebra in lower 
than ten dimensions (K. Stelle, private communication). 

7 Note that we represent the fivebrane in terms of a six-form gauge field, the field strength/7012345 i being the 
dual of F]k/,n. This will he done for all D = 11 solutions presented in the paper. The D = 11 Chern-Simons 
term does not contribute to the solutions considered in this paper. This can be easily seen by noting that all 
non-zero gauge-field curvatures have a time component. 

8 Note that we cannot apply T-duality in eleven dimensions to relate these three intersections. Therefore we 
must also consider intersections of M-branes that intersect over a p-brane with p > 0. 
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Next, we add further M2-branes and /o r  M5-branes, always satisfying condition (1)  

for each pair. Like in D = 10, we find that this procedure stops at N = 8. We will  not 

present the details o f  our constructive procedure but instead present the results below. It 

might  be thought that the D = 11 result can be immediately obtained from the results of  

Section 2, but this is not quite true. One can go from M-branes in D = 11 to D-branes 

in D = 10 only i f  there is a direction such that all M2-branes are reduced to D2-branes,  

and all M5-branes to D4-branes. This will  not be true in general, some configurations 

(which have N >~ 4) in D = 11 will  only reduce to D = 10 intersections that involve 

N S - N S  branes. 

To characterize the configurations, we use again the contents of  the columns (the 

components  of  the metric corresponding to the spacelike directions except the overall 

transverse coordinates)  in the representation of  the metric. For an N-intersection each 

column can have 1 . . . . .  N × ' s ,  indicating world-volume directions. The numbers of  

columns with k world-volume directions label the solutions, in the notation {n l , .  • •, nN} 
(using curly brackets) .  It is convenient to classify, in a first stage, the eleven-dimensional 

intersections up to T-duality. T-duali ty works as follows in D = 11 [27] .  Two D = l l  

solutions are called T-dual if, upon reduction to D = 10 dimensions, they lead to T-dual 

D-brane configurations. These T-dual D = 11 solutions can be represented by the labels 

(n l  . . . . .  n tu /2] )  (using round brackets) which were used in the previous section to 

label T-dual D-brahe configurations. Such a classification in terms of  D = 10 solutions 

was also used by [20] for N = 2. Of  course, this notation can only be used for D = 11 

intersections that can be reduced to D-branes only. 

The results we find in D = 11 can be represented in three different ways. First  of  

all, in Fig. 2 we present the solutions up to T-duali ty in D = 11. For those M-brane 

intersections that reduce to one of  the D-brane intersections given in Fig. 1, we use the 

same notation (nl  . . . . .  n[N/2] ) as in the previous section. The gray rectangles indicate 

the solutions which necessarily contain N S - N S  branes in D = 10, and for those the 

D = 11 notation {nl . . . . .  nN) is used. As in D = 10, we can have at most eight 

intersecting branes. Secondly, in Table 1 we provide more details about the contents of  

Fig. 2 by showing all D = 11 solutions that correspond to the same D = 10 D-brane 

intersection. Finally, in Appendix  B the N = 8 intersections are given explicitly. We 
have checked that these intersections indeed solve the equations of  motion. 

As in D = 10, the complete  structure of  the D = 11 intersections can be recovered by 

the requirement of  part ial ly unbroken supersymmetry. Since the procedure is identical 

to the one used in D = 10 we will  not give the details. The amount of  unbroken 

supersymmetry for the different solutions is indicated in Fig. 2. 

As an example consider the intersection of  seven M5-branes: {0, 0, 7, 0, 0, 0, 2}. This 

solution has recently been considered in [30] .  This configuration cannot be extended to 

N = 8 by adding another M-brane but is equivalent, via T-duali ty in D = 10, to a second 

N = 7 configuration { 0 , 0 , 6 , 2 , 0 , 0 , 0 }  (see Table 1). This T-dual N = 7 configuration 

can be extended to N = 8 as indicated in Fig. 2. Note that the third N -- 7 configuration 

{ 0 , 0 , 0 , 7 , 0 , 0 ,  1}, belonging to the same ( 0 , 0 , 7 )  class, and its extension to N = 8 

{ 1 , 0 , 0 , 7 , 0 , 0 , 0 ,  1) were given in [14] .  
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Fig. 2. M-brahe intersections with n = 4,5 in eleven dimensions: the numbers (nl . . . . .  n[N/2 ] ) are the 
same labels used in D = 10, and indicate to which D-brane intersection the D = 11 solution reduces. The 
configurations in gray rectangles only reduce to D = 10 intersections involving NS-NS branes. For these 
configurations we use the eleven-dimensional notation {nl . . . . .  nN} explained in the text. The subscripts 
indicate the amount of residual supersymmetry. 

Final ly,  we  cons ider  the e leven-d imens iona l  or ig in  o f  the N = 8 D-brane  in tersect ion 

( h i ,  n2, n3, n4) = (0,  0, 0, 7) .  In Sect ion  2 we  found that this intersect ion does not  fo l low 

f r o m  the d imens iona l  reduc t ion  o f  a D = 11 intersect ion consis t ing o f  (non-boos ted )  

2- and 5-branes  only. Ins tead  we  find that i t  corresponds to an N = 7 in tersect ion 

{0, 0, 0, 7, 0, 0, 1} boos ted  a long  the c o m m o n  string direct ion.  This  conf igurat ion can be  

v i ewed  as an in tersec t ion  o f  seven M5-branes  and a D = 1 1 gravi ta t ional  wave  and has 

a non-d iagona l  metr ic :  

ds211 = ( H 2 H 3 H 4 H s H 6 H 7 H s )  -½ [ ( 2  - H1 )d t  2 - Hldx20 + 2( 1 - H 1 ) d t d x l o  

- (  H 2 H s H s ) d x ~  - ( H 2 H 6 H 7 ) d x  2 - ( H3H6Hs)dx~  - ( H 3 H s H 7 ) d x  2 

- (  n 4 H T H 8 ) d x  2 - ( H 4 H 5 n 6 ) d x  2 - ( H 2 H 3 n 4 ) d x  2 

--(  H2H3H4H5H6HTH8)  ( dx  2 q- dx  2) ] .  (17 )  

The  so lu t ion  has two  overal l  t ransverse direct ions,  and all H i are harmonic  on this 

two-d imens iona l  space. 
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Table 1 
Table of  M-brane  intersections in D = 11: The number  N indicates the number  of independent  harmonics. 
The boldface labels (n l  . . . . .  n[N/21 ) correspond to the D = 10 D-brane intersection to which the D = 11 
solutions reduce (when  applicable).  The numbers  between square brackets indicate the number  of M2-branes 
and M5-branes  involved in the intersection. The labels {nl  . . . . .  my} specify the structure of  the D = 11 
metric as explained in the text 

N = 8 (0,4,0,4) (1,0,7,0) {1 ,0 ,0 ,7 ,0 ,0 ,0 ,1}  

[24,54]{0,4,0,5,0,0,0,0} [24,54]{1,0,6,1,1,0,0,0} [21,571{1,0,0,7,0,0,0,1 } 

N = 7 (1,3,4) (0,0,7) {1 ,0 ,4 ,3 ,0 ,0 ,1}  7 

[571{1,0,4,0,3,0,1} 
[571 {0,3,0,4,0,1,1} 
[23,541 {1,2,4,1,1,0,0} 
[23,54 ] {1,3,1,4,0,0,0} 
[24,531 {1,3,4,1,0,0,0} 

[571{0,0,7,0,0,0,2} 
[571{0,0,0,7,0,0,1} 
[23,54 ] {0,0,6,2,0,0,0} 

[21,561 {1,0,4,3,0,0,1} 

N = 6 (2,4,2) (0,3,4) {1,2,4,1,0,1} 

[56]{1,2,2,2,1,1} 
[22,54 ] {1,4,2,1,1,0} 
[22,541 {2,2,2,3,0,0} 
[23,531 {2,3,3,1,0,0} 
[24,521 {2,5,2,0,0,0} 

[56]{0,0,4,3,0,1} 
[56]{0,3,4,0,0,2} 
[ 22,54 ] {0,2,4,2,0, O} 
[23,53 ] {0,3,5,0,0,0} 

[21,551 {1,2,4,1,0,1} 

N = 5 (4,4) (1,6) {2,3,3,0,1} 

[55]{2,2,2,2,1} 
[21,54] {3,1,3,2,0} 
[22,53 ] {3,3,2,1,0} 
[23,52 ] {4,3,2,0,0} 
[ 24,51 ] {5,4,0,0,0} 

[551 {1,4,2,0,2} 
[55]{0,2,4,1,1} 
[21,54 ] {0,4,2,2,0} 
[21,54]{1,6,0,1,1} 
[22,531 {1,3,4,0,0} 
[23,52 ] {1,6,1,0,0} 

[21,54]{2,3,3,0,1} 

N = 4 (8,0) (4,3) (0,6) {1 ,6 ,0 ,1}  

[22,52]{6,1,2,0} [54]{3,3,1,2} [22,52]{0,7,0,0} [21,53]{1,6,0,1} 
[24]{8,0,0,0} [54]{1,3,3,1} [54]{0,6,0,2} 
[54]{4,0,4,1} [21,53]{4,3,1,1} 

[ 21,53 ] {2,3,3,0} 
[22,52 ] {3,4,1,0} 
[23,51 ] {5,3,0,0} 

N = 3 (6 )  

[5 3 ] {6,0,3} [5 3 ] {3,3,2} [21,5 2 ] {2,5,0} 
[53]{0,6,1} [21,52]{5,2,1} [22,51]{5,2,0} 

[23]{6,0,0} 

N = 2 (4 )  

[521 {4,3} [21,511 {5,1} [221 {4,0} 
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4. Reduction to lower dimensions 

131 

A natural application of our results is the reduction of the M-brane and D-brane 
intersections we found in the previous two sections to dilatonic p-branes in lower 
dimensions. This will lead to dilatonic p-brahe solutions which can be understood as 
D- and/or M-brane bound states in D = 10, 11. The interpretation of lower-dimensional 
solutions in terms of bound states of D- and/or M-branes in D -- 10, 11 is a useful tool 
for understanding the properties of these lower-dimensional solutions, especially in the 
case of (extremal) black holes where it has opened up the possibility for a microscopic 
explanation of the Bekenstein-Hawking entropy [31]. It was recently discovered that 
the D = 4 (extremal) dilaton black holes preserving ½ of the supersymmetry can be 
interpreted as bound states of D-branes (M-branes) compactified on a six-toms (seven- 
torus) [ 11-14,32,33]. It was shown, using the N = 4 (0,6) intersection in D = 10 (see 
Fig. 1), that the four values of  the dilaton coupling a 2 in D = 4 could be reproduced by 
identifying the harmonic functions (equal charges) and truncating to intersections with 
smaller N (by setting some of the harmonic functions equal to one). 

Using the D- and M-intersections constructed in this paper we find many other inter- 
sections which can be reduced to p-branes in lower dimensions. The general (Einstein 
frame) form of our reduced action (upon identifying some of the harmonic functions 
and setting the others equal to one) for D > 2 will always be in the class of Lagrangians 
of the form 

[ (--1)P+I ] 
£E.D = V ~  R + 1 (0q~)2 + 2(p  + 2)!  eadaF~p+2) " (18 )  

Using the ansatz 

dS2,D = gadS2+l  ~ 2 -- H dSd_p_ 1, 

e 2~ = H e, (19) 

Fo...pi = ~ Oi H - 1  , 

we know that the general p-brane solution (D > 2) is given by 9 

4 ( D - p  - 3) 4 (p  + 1) 
OL-- , / ~ - -  

A(D -- 2) A ( D  - 2) ' 

4a ~2 4 
y = - - ,  = - - ,  (20) 

zl A 

with 

A = a2-+-2 
( p +  1 ) ( D - p  - 3 )  

D - -2  (21) 

The lower-dimensional p-brahe solutions which follow from the reduced D-brane and 
M-intersections (now containing only one independent harmonic function) must fall 
inside this class of solutions. For supersymmetric solutions one must have [34,28] 

9 We use here a form of the solution as given in [34]. 
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A = 4 I N ,  (22) 

where N is an integer labeling the number of  participating field strengths, in our case 

this is the number of  intersecting branes. 

Any toroidal  Kaluza-Kle in  reduction of  the D = 10, 11 intersections will be a su- 

persymmetry  preserving p-brane  solution in a lower dimension. Because the number 

of  part icipating field strengths is equal to the number of  intersecting branes we can 

immediate ly  read off our dilatonic p-brane solution from (20) and (21) 

As an il lustration, consider the N = 8 D-brane intersections (see Fig. 1). We see that 

one of  them, labeled by (0,0,0,7),  can be naturally reduced to 0-branes in D = 3 by 

reducing over all relative transverse directions. Every truncation of  this solution can of  

course also be reduced to D = 3 0-branes, giving rise to eight different supersymmetry 

preserving solutions in D = 3. Doing the explicit  Ka luza-Kle in  reduction we find that 

the different values of  a 2 representing the different solutions (the explicit  solution can 

be determined using ( 2 0 ) )  are given by 

a 2 = 4 I N ,  (23)  

which is jus t  (21)  with p = 0, D = 3 and N running from 1 to 8. So we find eight 

supersymmetry preserving 0-branes in D = 3 (in contrast to the four 0-branes in D = 4) 

with the dilaton coupling given by (23)  [35] .  

The general rule is to find the highest N intersection in the D- and /o r  M-intersections 

that can be reduced to a single p-brane  in a lower dimension. The p-brane solutions in 

that lower dimension are given by (20) and (21) with A = 4 I N .  Note that N is the 

only parameter, and that therefore different configurations of  intersecting D- and /o r  M-  

branes with the same N, will all reduce to the same p-brane in lower dimensions upon 

identification of  the harmonic functions (even i f  the D = 10, 11 intersecting solutions 

preserve different amounts of  supersymmetry) .  

We will  now discuss the various p-branes  in lower dimensions obtained after reduction 

of  D- and /o r  M-brane intersections. 

* D = 3: So far we discussed the reduction of  D-brane intersections to 0-branes in 

D = 3. Because the N = 8 configuration (0,0,0,7) cannot be oxidated to a (non-boosted)  

D = 11 M-brane intersection, the reduction from D = 11 to 0-branes in D = 3 will give 

only seven different solutions. To be precise, the N = 7 M-brane intersections labeled 

by { 0 , 0 , 6 , 2 , 0 , 0 , 0 }  and { 0 , 0 , 0 , 7 , 0 , 0 ,  1} can be reduced to D = 3 0-branes (giving 

the same solutions as reduction o f  the N = 7 (0,0,7) D-brane intersection).  Of  course, 

if  we extend our ansatz and use the boosted D = 11 N = 7 {0, 0, 0, 7, 0, 0, 1 } solution 

(17)  we do obtain the eighth 0-brane in D = 3. 

In D = 3 the other possibi l i ty  is to consider string (domain wall t° ) solutions. 

Because we have eight 0-branes in D = 3 and we can always do T-duality in one of  

the overall transverse directions on the N = 8 (0,0,0,7) D-brane intersections we find 

eight domain wall solutions. These same domain wall solutions also have an M-brane 

t0 We use the name domain wall to indicate a (D -- 2)-brane solution in D dimensions. 
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bound state interpretation because the { 1,0,  0, 7, 0, 0, 0, 1} M-brane intersection can be 

reduced to domain walls in D = 3 (note  that this intersection cannot be reduced to 

D = 10 D-branes) .  

This means that in D = 3 we find eight 0-branes and eight domain walls, both series 

of  solutions can be described as bound states of  D-branes. One of  the 0-branes cannot 

be interpreted as a bound state of  (non-boosted)  M-branes,  but can be obtained from 

D = 11 using a boosted N = 7 solution. 

* D = 4 :  Having a closer look at the { 0 , 0 , 0 , 7 , 0 , 0 ,  1} M-brane intersection we see 

that this intersection can be reduced to strings (1-branes)  in D -- 4, which implies 

that there are seven supersymmetry preserving str ing solutions in D = 4 [28] with the 

solutions given by (20)  and (21) .  From the reduction of  the D-intersections we can 

obtain four different string solutions in D = 4 by using T-duali ty in one of  the overall 

transverse directions in D = 10 on the (0,6) intersection. So we get three extra string 

solutions in D = 4 from the M-brane intersections. 

By performing T-duali ty on an overall transverse direction we obtain four domain 

walls coming from the (0,6) D-brane intersection [29] .  Surprisingly, we can get three 

extra domain wall solutions in D = 4 from the M-intersections. The {0, 0, 7, 0, 0, 0, 2} 

N = 7 M-brane  intersection can be reduced to domain walls in D = 4 and will give 

three extra domain wall  solutions [30] .  

This completes the D = 4 case, which has four 0-branes, seven strings and seven 

domain walls  ( four  coming from D-branes, seven coming from M-branes) .  

o D > 4: In dimensions higher than four there are fewer possibili t ies.  In D = 5 we 

find three particle,  three string, three membrane and three domain wall solutions coming 

from the {6, 0, 0}, {0, 6, 1}, {3, 3, 2} and {6, 0, 3} M-brahe intersections respectively 

[ 12]. Only the N = 1,2  have a D-brane origin, all the solutions have an M-brane origin. 

In D = 6 p-branes  come in pairs and have a D- and M-brane origin. In D = 7 there 

exist two supersymmetry preserving 0-branes, both having an M-brane interpretation, 

only one having a D-brane interpretation. The basic D-branes in D = 10 and /o r  the basic 

M-branes in D = 11 (M2-  and M5-brane)  can be reduced to supersymmetry preserving 

p-branes  in D > 7. Because the D8-brane in D = 10 has no (known) D = 11 origin 

there will  be no domain wall solution in D = 9 with an M-brane origin. 

• D = 2: So far we did not discuss D = 2. We see that in principle all N = 8 

intersections in D = 10, 11 can be reduced to D = 2 0-branes. In this case, however, 

we must work in the string frame and (21)  is no longer valid. Therefore we redo the 

Ka luza-Kle in  reduction of  the D -- 10 intersections, keeping the string-frame metric. 

The reduction to D = 2 will  always fall in the following class of  Lagrangians (only  

0-branes)  

Z;s,2 = V / - ~ l e - Z ~ [ R  - 4(&b)  2 ] - ¼V/~leO~F~2). (24)  

Weyl invariance in D = 2 ensures that the reduced Lagrangian can always be written in 

the above way. The general 0-brahe solution of  this Lagrangian is 
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Table 2 
D-brane a n d / o r  M-brane interpretation of  dilatonic p-branes in D ~< 6 dimensions:  The numbers r[D s, M t ] 
indicate that  there are r solutions, for given D, p ,  of  which s have a D-brane interpretation and t have an (non-  
boosted)  M-brane interpretation. Note that one of  the eight  D = 3 p = 0 branes has a D = 11 interpretation 
only as a boosted N = 7 5-brane solution 

D p = 0  p = l  p = 2  p = 3  p = 4  

6 2[D2, M 2 ] 2[D2, M 2 ] 2[D2, M 2 ] 2[D2, M 2 ] 2[D2,  M 2 ] 

5 3[D 2,M 3] 3[D 2,M 3] 3[D 2, M 3] 3[D 2,M 3] -- 
4 4 [D4 ,  M 4 ] 7 [D4, m 7 ] 7 [D4, M 7 ] - 
3 8[D 8, M 7 ] 8[D 8 , M 8 ] -- -- -- 
2 8[D 8, M 8 ] . . . .  

2 2 
~ = -  - 1 ,  ~ . . . .  1 ,  ( 2 5 )  

a a 

2 ~2 4 
Y = a - '  = - - ' a  (26) 

where it is understood that the same ansatz (19) is used as in the Einstein frame case. 

We find that for every number N of intersecting D-branes there is only one dilaton 

coupling constant representing the 0-brane solution. For example, all three N = 8 inter- 

sections give rise to the same two-dimensional 0-brahe, thus confirming that for every 

N there is only one 0-brane solution, just  like in D > 2 [34].  The dilaton couplings 

representing the supersymmetric solutions are given by 

a = - -4 /N ,  (27) 

with N = 1 . . . . .  8. Note that we now give the string-frame dilaton coupling (defined 

by the Lagrangian in (24) )  with a definite sign. This is done because in the D = 2 

string frame there is no symmetry that flips the sign. Because the different solutions 

are labeled by N and most of the M-brane intersections can be reduced to D-branes in 

D = 10 we are convinced that the reduction from D = 11 will give the same results. 

So there are eight supersymmetry preserving 0-brane solutions in D = 2 with dilaton 

coupling given in (27) ,  all of them having a D- and M-brane interpretation. It would 

be interesting to see whether the D-brahe interpretation could shed any new light on the 

structure of black holes in two dimensions [36].  11 

Finally, we mention that all p-brane solutions in lower dimensions preserve half of 

the maximal supersymmetry in contrast to the intersecting D- and/or  M-intersections in 

D = 10, 11. This gain in supersymmetry is a result of the identification of the different 

harmonics (equal charges). For an overview of the number of dilatonic p-brane solutions 

in lower dimensions (D ~< 6) with a D- and/or  (non-boosted) M-brane bound state 

interpretation we refer to Table 2. 

11 In fact, O.A. Soloviev informed us that he is studying this connection. 
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5. Conclusions 

In this paper we have given a classification of  all multiple intersections of  D-branes 
in ten dimensions and M-branes in eleven dimensions that correspond to threshold BPS 
bound states. In both cases we found that the maximum number of  participating branes 
is eight. Allowing one n = 8 pair we can extend the number of  intersecting branes to 
the maximum of  nine. Furthermore, we found that not all D-brahe intersections can be 

lifted up to non-boosted M-brane intersections in eleven dimensions. Conversely, not all 
M-brane intersections can be reduced to a ten-dimensional configuration of  intersecting 
D-branes only. We also investigated the supersymmetry of  the intersections, both in 

ten and eleven dimensions, and found that for all configurations at least 1/32 of  the 
supersymmetry is preserved. 

There are several ways in which the classification presented in this work can be 
extended. First o f  all, we may consider boosted M-brane intersections [ 11-16] .  The 
rule seems to be that, in case the intersection has a common string isometry direction x, 
one can add a Brinkmann wave with non-trivial (non-diagonal) metric components in 

the (x °, x) direction. The Brinkmann wave is the eleven-dimensional origin of  the D0- 
brane. A similar mechanism should exist where the wave is replaced by its magnetically 

charged partner (being the eleven-dimensional origin of  the D6-brane). We thus obtain 
intersections with more than eight independent harmonics. It is expected that this wider 
class of  intersecting M-branes gives rise, upon dimensional reduction to ten dimensions, 
to the class o f  intersections that contains not only D-branes but also NS-NS strings, five- 

branes and/or  their T-duals. Of course, these intersections do not involve 8-branes whose 
eleven-dimensional origin so far has been a mystery. This concludes the classification 
of  solutions that correspond to threshold BPS bound states. 

One may also extend the solutions to the ones that correspond to non-threshold BPS 
bound states. For instance, by considering M-branes finitely boosted in a transverse 
direction [22] one obtains D = 11 solutions that reduce to D-brane bound states with 

n = 2 or 6. Furthermore, by considering a wave propagating along a generic cycle of  
a 2-torus [22] one obtains D = 11 solutions that reduce to the D = 10(ql ,q2) string 
solutions of  [ 23 ]. There are also non-threshold BPS bound states in eleven dimensions, 
like the one given in [25] .  It would be interesting to see how they fit in the general 
classification scheme. 

Finally, we note that all knowledge about intersecting configurations is contained in 
the D = 11 solution with the maximum number of  independent harmonics. The other 
ones can be obtained from these basic solutions via truncation and/or  dimensional 
reduction. We have seen that there are very few of  these basic configurations. Even 
including intersections with NS-NS branes and/or  non-threshold BPS bound states, we 
expect the number of  basic solutions to be limited. It would be of  interest to construct 
these basic M-brane configurations explicitly. 
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Appendix A. N = 8 D-brane intersections 

In this appendix we give the explicit form of the metric for eight intersecting D- 
branes. There are three inequivalent N = 8 intersections. Note that the first two can be 
written via T-duality (in the x2 and x3 direction) as an intersection of four 2-branes 
and four 4-branes, and therefore can be lifted up to intersecting (non-boosted) M-brahe 
solutions in eleven dimensions. The third solution can not be written as intersecting 2- 
and 4-branes and requires a non-diagonal form of the metric in eleven dimensions (see 
Eq. (17) ) .  Using the notation explained in Section 2, the metric for the three N = 8 
intersections are given 

( 0 , 4 , 0 , 4 )  : 

(1,0,7,0): 

(0,0,0,7): 

by 

X X X  

X X X  

X - -  - -  

X X - -  

X - - X  

X X - -  

X - -  X 

X - -  - -  

X X X  

X X X  

X - -  - -  

X X  

X - -  X 

X - -  X 

X - -  X 

f 

X - -  - -  

X X X  

x i x  X 

X - -  - -  

X X - -  

xix - 
X - -  X 

~ X i - -  X 

. . . . . .  I _  

X X I - -  - -  - - ~  

- - - - I X  X - - - I -  

ra 

i l  X - - I X  - -  X 

X - - I X  - -  

X - - I - -  X 

X - - I - -  X X 

X X - -  - -  

X X X X 

- - - -  X X 

X - - I X  - -  X - -  

X - - , X  - -  - -  X - -  
i 

- -  X l X  - -  X - -  - -  
i I 

X - - ~ - -  X X - - I - -  
I I 

X X . . . . . .  

- - - -  X X I - -  - -  - -  

X X X X l - -  - -  - -  

X - -  X - - I X  - -  - -  

- -  X - -  X l X  - -  - -  

X - -  - -  X I X  - -  - -  

- -  X X - - IX  - -  - -  

(A.~) 

(A.2) 

(A.3) 
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All intersections with N < 8 can be obtained from these via different truncations. 
There are, of  course, many different ways of  truncating to lower intersections. However, 

as w e  can see in Fig. 1, many of  them will  lead to the same class. To recognize the 
class one has to determine the nk's representing the class, this means counting the times 
a particular building block occurs in the configuration (see  Section 2) .  

Appendix  B.  N = 8 M-brane  intersect ions 

In this appendix w e  give the explicit form of  the metric for the configurations with 
N = 8 n = 4, 5 M-branes. As explained in Section 3 we can label classes of  M-brane 

intersections by the D-brane intersection classes they reduce to. Some possible M-brane 
intersections cannot be reduced to D-brane intersections and then we  are forced to use 
the particular D = 11 building block numbers. The configurations below are given with 
the D = 11 building block numbers (and their preserved supersymmetry).  The first one 

can also be labelled with (0 ,  4, 0, 4)1/32 representing the N = 8 D-brane intersection it 

reduces to. The second one reduces to the ( 1 , 0 ,  7, 0)1/32 N = 8 D-brahe intersection 
and the third one cannot be reduced to a D-brane intersection. 

{ 0 , 4 , 0 , 5 , 0 , 0 , 0 , 0 } 1 / 3 2  : 

{1 ,0 ,6 ,  1, 1 , 0 , 0 , 0 } 1 / 3  2 : 

[ X 
I 
i X 

I X 
X 

X 

r" 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X X 

X - -  - -  

- -  X 

X - -  

X - -  

X X 

- -  X 

X - -  

- -  X 

X - -  

X X 

X - -  

X - -  

X - -  

X - -  

X - -  

X - -  

X - -  

{1,0,0,7,0,0,0, 1 } 1 / 3 2  " 

I 

- -  I X x 

X X I _ 

i l l  - -  

X - - , X  - -  

X - - f  

X I ~ X  I I 

i 

X X I  

- i x  x 
- I  
N N  

- x l x  - 

X ~ X - -  

X X 

X X X X  

X X - - - -  

- - - - X X  

X - - X  

- - X  X 

- - X X  

N - - - - X  

I I 

X X - -  - -  

X - -  X - -  

X - -  X 

X - -  X 

- -  X X - -  

X X 

- -  X X - -  

X - -  X - -  

X - -  X - -  

- -  X X 

X X i - -  - -  

x x l - - - -  
X - - I X  - -  

X - - I X  - -  

- -  × 1 ×  - -  

-- x l x  -- 

(B .1)  

(B .2)  

(B .3)  
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As in the case of D-branes we can obtain lower intersections through truncation. In 

order to obtain all configurations in Table 1 we have to make use of T-duality in D = 10. 

This T-duality should be carried out such that we keep D2 and/or  D4-branes in D = 10, 

so we can lift up the solution back to intersecting M-branes in D -- 11. The D = 11 

building block numbers (nk) can then be read off in a straightforward manner. 

Appendix  C. D-brane  and M-brane  intersections with  n = 4, 5, 8 relative 
transverse  direct ions  

In this appendix we discuss intersections with n = 4, 8 (D = 10) or n = 4, 5, 8 

(D = 11), and the dependence on relative transverse coordinates, i.e. corresponding to 

the conditions (2) and (3) in the Introduction. 

It is easy to see that it is impossible to construct a configuration with three intersecting 

D-branes such that all pairs have n = 8 with a non-trivial dependence of the harmonic 

functions on the relatively transverse coordinates. 

Let us work out in some detail how the dependence on relative coordinates can be 

brought in, since we will have to be careful about the allowed dependence on these 

coordinates. Consider any n = 4 configuration with dependence on overall transverse 

coordinates only, e.g. the D = 10 solution given in (A.1),  which we copy below 

in (C.1).  Now, suppose H2, the harmonic function corresponding to the second line 

in (C.1),  does not depend on x9 but instead on the relative coordinates x5 . . . . .  x8. 

Then we have realized a configuration satisfying condition (2) .  However, in verifying 

the equations of motion we find that the dependence on x5 . . . . .  x8 has to be further 

restricted: the metric components gii have to be the same for each of the relative 

coordinates xi on which the brane depends. Only then do the equations of motion lead 

to a harmonic equation for H2. In this case that means that //2 can depend on only 

one of the coordinates xs ,  x6, x7 or xs. Note that we can do this only for one harmonic 

function at the time, since any pair which both depend on relative coordinates must have 

N = 8, ( 0 , 4 , 0 , 4 )  : 

H = 8 .  

X . . . . . .  

X X X X X - - - -  

X X X - - - - X X  

X - - - - X X X X  

X X - - X - - X - -  I 

X - - X X - - X - -  

X X - - X - - - - - X  

X i X X - - - - X  

! 

X - - i - -  

- - × 1 - -  

- - × i -  
x - - E - -  

(c.1) 

Since we have a different dependence on one harmonic function, we also have to change 

our ansatz for the gauge field: the gauge field of the D-brane represented by H2 is now 
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N = 9  

N = 8  

N = 7  

N = 6  

N = 5  

5 ! = 4  

(0,4,4)1/32 ~ ,  1, 6)1/32 [ 

I (4,4)1/16 ] 

m = 3  I (s)1/8 t 

I 
N = 2  [ (8)1/, [ 

I 
N = ~  [ (0)1/~ i 

Fig. C.1. D-brane intersections with n = 4, 8 in ten dimensions: The solutions are labelled by (nl . . . .  n[N/2] ), 
as explained in Section 2. For N = 5 an extra superscript is added to distinguish between the two sets of 
labels. Subscripts indicate the supersymmetry of the configurations. The (1,0, 0, 7) configuration given in the 
grey rectangle cannot be extended to eleven dimensions in terms of (non-boosted) 2- and 5-branes. 

given by  

F01234r = cgrH2 1, (C.2) 

where Xr can be either xs,  x6, x7 or xs. 

It  turns  ou t  that in  this way all configurat ions sat isfying condi t ion  (2)  o f  the In-  

t roduct ion  can be ob ta ined  f rom the ones sat isfying condi t ion  (1)  o f  the Int roduct ion.  

Therefore,  the classification of  intersect ions sat isfying condi t ion  (2)  is the same as the 

one  sat isfying cond i t ion  (1)  and is therefore given by Fig.  1 as well. This  concludes  

our  classif ication of  the configurat ions  sat isfying condi t ion  (2 ) .  
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We next consider the configurations satisfying condition (3 )  of  the Introduction. 

Consider the "mirror" configuration o f / / 2  in the above configuration, i.e. the brane 

×I- - I -  - I  X xl× ×1-, (c.3) 

in which all x ' s  in the relative coordinates have been replaced by - ' s  and vice versa. 
This 4-brane has n = 8 with H2, and n = 4 with the other seven branes included in 

(C.1) .  Since it has n = 8 w i t h / / 2 ,  its harmonic function, / /9 must depend on ( s o m e  
of  the) coordinates xl  . . . . .  x4, to satisfy the conditions (3 )  of  the Introduction. An 
investigation of  the equations of  motion reveals that only dependence on one of  the 

coordinates x l ,  x2, x3 or x4 is allowed: the metric must again be of  the same form in 
the relative transverse coordinates. 

This s imple mechanism makes it possible to introduce an additional brane into any 

n = 4 configuration, by constructing an n = 8 pair with one of  the constituents. In the 
present case this leads to the N = 9 configuration: 

N = 9 ,  ( 0 , 1 , 2 , 5 )  : 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X X X - -  - -  

X X - - - -  X X 

X X X X 

X - -  X - -  X - -  

- -  X X - -  X - -  

X - -  X - -  - -  X 

- -  X X - -  - -  X 

- - - -  X X 

X - -  - -  

- -  X - -  

- -  X - -  

X - -  - -  

X X - -  

( C . 4 )  

In Fig. C. 1 w e  give the extension to n = 4, 8 of  Fig. 1. Note  that, in contrast to the 

n = 4 case, the labels (nl  . . . . .  ntN/2 l) do not uniquely specify the configuration: the 
two configurations with N = 5 have the same building block numbers (nk's) ,  although 
they are inequivalent. To distinguish between them we  have added a superscript A or B. 
For the sake of  completeness we  also give the form of  the gauge fields of  the D-branes 

that depend on the relative coordinates Xr and Xs [ 18] 

F0(2) c r  _q r j - 1  
1 2 3 4 r  ~ "  n 9 U r l ~ 2  ' 

f(95 )678s -= g 2 O s g 9 1  . ( C . 5 )  

Note  that these curvatures indeed satisfy the Bianchi identity, and that we  obtain the 
correct truncation by setting either H2 or H9 equal to one. 

We next repeat this analysis for M-branes in D = 11. The only possibility for two 
M-branes to have n = 8 is two 5-branes intersecting over a string [ 14] : 

n = 8, (115 ,5)  : (C.6)  
X - -  X X X - -  

This solves the equations of  motion with H1, Ha depending on the relative transverse 

directions. As in D = 10, w e  will  only consider the possibility of  having a single n = 8 



E. Bergshoeff et al. /Nuclear Physics B 494 (1997) 1i9-143 141 

N = 9  

N = 8  

/ V = 7  

N = 6  

N = 5  

N = 4  

N = 3  

N = 2  

N = I  

(0,1,3,4)i /3 2 

(4, 4) 1/16 

(0,4,4)1/32 ] [ .... (1,1,6)1/32 

(1,4,3)1/32 I [ I (2,0,6)1/s~ 

(8)i/8 

(8)1/4 

(0)1/2 

Fig. C.2. M-brane intersections with n = 4, 5, 8 in eleven dimensions. Since all configurations reduce to 
D-branes in D = 10 with n = 4, 8 we use D = 10 labels to classify the solutions. For N = 5 an extra superscript 
is added to distinguish between the two sets of  labels. Subscripts indicate the unbroken supersymmetry. 

pair. 12 Then there are no essential differences between the D = 10 and the D = 11 

construction and we will skip the details. Fig. C.2 represents the result. 

Finally we give an example of an N = 9 configuration in D = 11. Note that/-/5 and 

/-/6 (the lines 5 and 6 in (C.7))  are the n = 8 pair. //5 may depend on  one of the 

coordinates x 2 , x 4 , x 5  or x8, H6 on X I , X 3 , X  6 or  XT: 

12 However, in D = 11 configurations with several n = 8 pairs exist. While this paper was in press, this was 
pointed out in [ 37 ]. 



142 

(0, 1,3,4)1/32 : 

E. Bergshoeff et al./Nuclear Physics B 494 (1997) 119-143 

X 

X 

X 

x x l  

X - -  

- -  X 

X - -  

- -  X 

X - -  

X X x x  ~ 

X x 

- -  X I N  - -  

N ~ M - -  

N N 

li x x 

x - 

- x 

-- X ! X  

(C.7)  

As a final remark, we mention that in the D-intersections for n = 4, 8 we find a 

configuration, ( 1 , 0 ,  0, 7) ,  which cannot be obtained through dimensional reduction of  

an intersection of  (non-boosted)  M-branes with n = 4, 5, 8. As in Section 3, we see that 

instead the result in D = 11 has a non-diagonal  metric and involves a [ 58 ] configuration 

and the Brinkmann wave. This can be interpreted as a boosted eight [58 ] intersection in 

eleven dimensions.  More  explicitly, the configuration (1 ,0 ,  0, 7) (n  = 4, 8) in D = 10 

can be written as 

ds20 = ( H1H2H3 H4H5H6 H7H8H9 ) - 1~2{dr2 -- (I41H2H4H5 ) dx  2 

- (  H I H 2 H 4 H s H 6 H 7 H s H 9 ) d x ~  

- ( H1H2 H7 H8) dx~ - ( H1 H2 H t H 9 )  dx  ] 

- (  H 1 H 3 H s H t H 7 ) d x  2 .- ( H 1 H 3 H s H s H 9 ) d x  2 

- (  H1H3H4HTHg)dx~  - ( H 1 H 3 H 4 H 6 H s ) d x  2 

- (  H1H2H3H4H5H6H7HsH9  ) dx2}  , (C.8)  

e-24~ = H13/2  ( H2H3H4HsH6HTHsH9  ) 1/2, 

Ao = 1 - H~ -1 . 

Lifted up to eleven dimensions it has the form 

dS~l = ( H2H3H4HsH6HTHsH9  ) -1 /3  { ( 2 - Hi  ) d t  2 - Hldx~o + 2( 1 - H1 )d t dx l o  

-- ( H2H4H5 ) dx  2 - ( H2H4H5 H6H7H8 H9) dx~ - ( H 2 H 7 H s )  dx  2 

- (  H 2 H t H 9 ) d x ]  - ( H3HsH6HT)dXg - ( H 3 H s H s H 9 ) d x ~  

- ( H3 H4117 H9 ) dx  2 - ( H3 H4 H6 H8 ) dx  2 

- ( H 2 H s H 4 H s H 6 H 7 H s H g )  dx~} .  (C.9) 

It represents an intersection boosted in the direction xlo where H1 parametrizes the 

boost. I f  we set H1 = 1 we recover the [5 8 ] M-brane intersection. I f  instead we set all 

H = 1 except H b  we get the Brinkmann wave in eleven dimensions. 
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