32 research outputs found

    Merging and scoring molecular interactions utilising existing community standards: tools, use-cases and a case study.

    No full text
    The evidence that two molecules interact in a living cell is often inferred from multiple different experiments. Experimental data is captured in multiple repositories, but there is no simple way to assess the evidence of an interaction occurring in a cellular environment. Merging and scoring of data are commonly required operations after querying for the details of specific molecular interactions, to remove redundancy and assess the strength of accompanying experimental evidence. We have developed both a merging algorithm and a scoring system for molecular interactions based on the proteomics standard initiative-molecular interaction standards. In this manuscript, we introduce these two algorithms and provide community access to the tool suite, describe examples of how these tools are useful to selectively present molecular interaction data and demonstrate a case where the algorithms were successfully used to identify a systematic error in an existing dataset

    WormBase: a comprehensive resource for nematode research

    Get PDF
    WormBase (http://www.wormbase.org) is a central data repository for nematode biology. Initially created as a service to the Caenorhabditis elegans research field, WormBase has evolved into a powerful research tool in its own right. In the past 2 years, we expanded WormBase to include the complete genomic sequence, gene predictions and orthology assignments from a range of related nematodes. This comparative data enrich the C. elegans data with improved gene predictions and a better understanding of gene function. In turn, they bring the wealth of experimental knowledge of C. elegans to other systems of medical and agricultural importance. Here, we describe new species and data types now available at WormBase. In addition, we detail enhancements to our curatorial pipeline and website infrastructure to accommodate new genomes and an extensive user base

    The IMEx coronavirus interactome: an evolving map of Coronaviridae-host molecular interactions

    Get PDF
    The current coronavirus disease of 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus (SARS-CoV)-2, has spurred a wave of research of nearly unprecedented scale. Among the different strategies that are being used to understand the disease and develop effective treatments, the study of physical molecular interactions can provide fine-grained resolution of the mechanisms behind the virus biology and the human organism response. We present a curated dataset of physical molecular interactions focused on proteins from SARS-CoV-2, SARS-CoV-1 and other members of the Coronaviridae family that has been manually extracted by International Molecular Exchange (IMEx) Consortium curators. Currently, the dataset comprises over 4400 binarized interactions extracted from 151 publications. The dataset can be accessed in the standard formats recommended by the Proteomics Standards Initiative (HUPO-PSI) at the IntAct database website (https://www.ebi.ac.uk/intact) and will be continuously updated as research on COVID-19 progresses

    The IntAct molecular interaction database in 2012

    Get PDF
    IntAct is an open-source, open data molecular interaction database populated by data either curated from the literature or from direct data depositions. Two levels of curation are now available within the database, with both IMEx-level annotation and less detailed MIMIx-compatible entries currently supported. As from September 2011, IntAct contains approximately 275 000 curated binary interaction evidences from over 5000 publications. The IntAct website has been improved to enhance the search process and in particular the graphical display of the results. New data download formats are also available, which will facilitate the inclusion of IntAct's data in the Semantic Web. IntAct is an active contributor to the IMEx consortium (http://www.imexconsortium.org). IntAct source code and data are freely available at http://www.ebi.ac.uk/intact

    A period-doubled structure for the 90-degree partial dislocation in silicon

    Full text link
    We suggest that the commonly-accepted core structure of the 90-degree partial dislocation in Si may not be correct, and propose instead a period-doubled structure. We present LDA, tight-binding, and classical Keating-model calculations, all of which indicate that the period-doubled structure is lower in energy. The new structure displays a broken mirror symmetry in addition to the period doubling, leading to a wide variety of possible soliton-like defects and kinks.Comment: 4 pages, two-column style with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#jb_di

    Capturing variation impact on molecular interactions in the IMEx Consortium mutations data set

    Get PDF
    The current wealth of genomic variation data identified at nucleotide level presents the challenge of understanding by which mechanisms amino acid variation affects cellular processes. These effects may manifest as distinct phenotypic differences between individuals or result in the development of disease. Physical interactions between molecules are the linking steps underlying most, if not all, cellular processes. Understanding the effects that sequence variation has on a molecule's interactions is a key step towards connecting mechanistic characterization of nonsynonymous variation to phenotype. We present an open access resource created over 14 years by IMEx database curators, featuring 28,000 annotations describing the effect of small sequence changes on physical protein interactions. We describe how this resource was built, the formats in which the data is provided and offer a descriptive analysis of the data set. The data set is publicly available through the IntAct website and is enhanced with every monthly release

    The Gene Ontology resource: enriching a GOld mine

    Get PDF
    The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations
    corecore