4 research outputs found

    支那近代工業の性格

    Get PDF
    1. Detrimental impacts of excessive fine-grained sediment inputs to streams and rivers are well established. What is less well understood is the susceptibility of different elements of the freshwater biota to such perturbations and how such knowledge of their susceptibility could aid in identifying where excessive fine-grained sediment is impairing ecological condition. 2. Following the collection of biological and sediment data from 179 streams across England and Wales, representative of a range of river types over a gradient of fine sediment loading, objective statistical approaches were applied to establish relationships between the macroinvertebrate assemblage and fine-grained sediment inputs to river channels. 3. Having factored out that portion of the biological variation associated with natural environmental gradients, a model comprising mass of organic sediment in erosional areas of the stream bed [predominantly associated with the first axis of the partial canonical correspondence analysis (pCCA)], and mass of fine-grained sediment in the surface drape of depositional areas and % organic content in erosional areas (associated with the second axis of the pCCA) as explanatory variables best accounted for the residual variation in the macroinvertebrate assemblage. 4. The relative position of taxa along both axes of the pCCA, provided a ranking of taxa in relation to the two gradients of fine-grained sediment and provided the basis for a new empirically derived diagnostic index for fine-grained sediment stress in rivers. Two sub-indices were derived to capture the assemblage responses to both the gradient of organic sediment in erosional areas and the gradient of total fines in depositional areas. The two sub-indices were then combined to derive the new combined fine sediment index (CoFSIsp). 5. The index was tested on an independent test data set (comprising 127 samples from 83 sites) and was found to provide a robust indication of benthic fine-grained sediment conditions (Spearman's rank correlations ρ = −0.519 to −0.703). The strength of correlation with the total fine-grained sediment gradient was always greater than that for other routinely used indices, confirming that CoFSIsp offered additional explanatory power when assessing this stressor of aquatic environments

    Data from: Do agri-environment schemes result in improved water quality?

    No full text
    Improved water quality, through a reduction in diffuse pollution from agricultural sources, is an expected benefit of agri-environment schemes, but this has yet to be demonstrated in practice. Here, we evaluate the impact of Welsh agri-environment schemes on water quality and freshwater ecosystem condition through a combined monitoring and modelling framework. To determine the influence of the agri-environment schemes on ecosystem condition, spatially independent catchments dominated by a single scheme (>40% of catchment) were compared to control catchments dominated (>70%) by agricultural land that was not part of any scheme. Biological indicators of water quality were monitored at the outfall of each catchment and a spatially explicit modelling framework of diffuse pollutant emissions applied to each of the 80 catchments. Direct comparison (scheme/non-scheme) was unable to identify any significant effect of agri-environment scheme participation. However, derived biological indicators that reflected organic pollution, eutrophication and pesticide run-off were strongly correlated with modelled concentrations of corresponding diffuse pollutants, thus providing a ground-truth for the models. Scenarios that assessed the correct counterfactuals (i.e. the influence of scheme entry on pollutant output) were developed for the whole of Wales. The models indicated an important effect of scheme entry on water quality, but this effect was not evenly distributed across the landscape. Synthesis and applications. Our results indicate that agri-environment schemes can deliver improvements in water quality, through a reduction in diffuse pollution from agricultural sources. However, it is not easy to demonstrate scheme effectiveness; the combination of field survey and modelling used here provides a framework for addressing these difficulties. A spatially targeted approach for agri-environment scheme options to protect water resources from diffuse pollution is likely to be most effective at delivering water quality improvements
    corecore