14 research outputs found

    Nature and organization of the CuO 2 -plane

    Get PDF
    Diese experimentelle Arbeit beschäftigt sich mit Einkristallen der Bi Kuprate. Mittels Rastertunnelmikroskopie und der Beugung langsamer Elektronen wurde die strukturellen Eigenschaften untersucht. Es wurde ein bestehendes pseudobinäres Blei-Temperatur Phasendiagram erweitert. Mittels der Charakterisierungsresultate der energiedispersive Röntgenspektroskopie und der AC-Suszeptibilität wurde gezeigt, dass an bestimmten Lochdotierungen die Sprungtemperatur unterdrückt ist. Diese Tatsache wird für zwei Variationen des Bi2201 Kuprat-Systems bewiesen - durch Literaturdaten auch für LSCO. Desweiteren wurde argumentiert, dass die sogenannte Checkerboard-Ordnung nicht eine Ordnung der elektronischen Struktur ist. Vielmehr kann davon ausgegangen werden, dass Sie durch Dotanten-Atome verursacht wird. Dabei könnte der zusätzlichen Sauerstoff eine Bedeutung haben. Die Pseudolücken-Phase wurde mittels winkelaufgelöster Photoemission (ARPES) sowie Widerstandsmessungen untersucht. Durch ARPES konnte gezeigt werden, dass die Lücke in der antinodalen Richtung keinen grossen Anteil einer Supraleitungslücke aufweist, sondern mehr von der Pseudolückenphase bestimmt ist. Es wurde festgestellt, dass in der winkelaufgelösten Photoemission nur eine Übergangstemperatur sichtbar war, während bei den Widerstandsmessungen zwei Übergangstemperaturen sichtbar waren. Zudem wurde gezeigt, dass die Pseudolückenphase auch auf der überdotierten Seite existiert. Ein ganz und gar neues Ergebnis ist der dotierungsabhängige Verlauf der Pseudolücken-Temperatur und der in ARPES gemessenen Pseudolücke. Es zeigte sich dort zweifelsfrei, dass die Pseudolücken-Eigenschaften an genau denselben Dotierungen starke Änderungen aufweisen, an denen auch die Sprungtemperatur unterdrückt ist. Deshalb wurde propagiert, dass die Supraleitung durch Paarung von Defektlöchern in einem ansonsten magnetisch- und ladungs-hochgeordnetem Elektronensystem entsteht.This thesis deals with the experimental exploration of the high-temperature superconducting Bi-cuprate system and mainly with single crystals of the one-layer Bi2201. To begin, the structural change resulting from Pb substitution was explored by using topological scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). The resulting morphologies were explained in a pseudo-binary phase-diagram. Using energy dispersive x-ray analysis and AC-susceptibility, it was proven that, for two variations of Bi2201 and also for LSCO, the superconducting transition temperature (TC) always drops at the same hole-doping values - an effect that might be explained by the so-called ''magic doping fractions''. By analyzing STM-data, it was reasonably argued that the so-called ''checkerboard order'' is not preferentially due to an ordering of the carriers in the Copper-Oxygen-plane. In the interpretation presented here, it is caused by dopant-atoms or dopant-complexes. The role of the Oxygen might be of particular importance. Measurements concerning the pseudogap-phase were then shown. Using angular resolved photoemission (ARPES), it was found that the gap in the antinodal direction is dominantly caused by the pseudogap-phase. Interestingly, while resistivity measurements detect two crossover temperatures, ARPES detects only the lower pseudogap-temperature. It can also be stated that the pseudogap also exists in the overdoped region. The most important finding about the pseudogap-temperature and the pseudogap-magnitude was that they also react on the doping values of the depressions in TC. Due to this finding, it was proposed that superconductivity occurs when an otherwise perfect charge-ordered and spin-ordered two-dimensional electronic system has mobile defective holes

    Lack of temperature dependence for the filling of the metallic-like bands in Si(553)-Au

    Full text link
    We study the temperature dependence of the metallic-like bands of Si(553)-Au by angular-resolved photoemission spectroscopy (ARPES). First, we define a protocol for dealing with the short-term stability due to surface contamination and the effect of photo-voltage. After that, we extract the changes in the band-filling and Fermi-velocity. We conclude that both quantities change only weakly with temperature. This lack of temperature dependence can be compared to currently proposed models for the temperature evolution of the electronic structure of Si(553)-Au

    1

    No full text

    Double band inversion in α -Sn: Appearance of topological surface states and the role of orbital composition

    No full text
    The electronic structure of \graySn(001) thin films strained compressively in-plane was studied both experimentally and theoretically. A new topological surface state (TSS) located entirely within the gapless projected bulk bands is revealed by \textit{ab initio}-based tight-binding calculations as well as directly accessed by soft X-ray angle-resolved photoemission. The topological character of this state, which is a surface resonance, is confirmed by unravelling the band inversion and by calculating the topological invariants. In agreement with experiment, electronic structure calculations show the maximum density of states in the subsurface region, while the already established TSS near the Fermi level is strongly localized at the surface. Such varied behavior is explained by the differences in orbital composition between the specific TSS and its associated bulk states, respectively. This provides an orbital protection mechanism for topological states against mixing with the background of bulk bands

    HgTe Nanocrystals for SWIR Detection and their Integration up to Focal Plane Array

    No full text
    International audienceInfrared applications remain too often a niche market due to their prohibitive cost. Nanocrystals offer an interesting alternative to reach cost disruption especially in the shortwave infrared (SWIR, λ<1.7 µm) where material maturity is now high. Two families of materials are candidate for SWIR photoconduction: lead and mercury chalcogenides. Lead sulfide typically benefits from all the development made for wider bap gap such as the one made for solar cells, while HgTe takes advantage of development relative to mid wave infrared detector. Here we make a fair comparison of the two material detection properties in the SWIR and discuss the material stability. At such wavelengths, studies have been mostly focused on PbS rather than on HgTe, therefore we focus in the last part of the discussion on the effect of surface chemistry on the electronic spectrum of HgTe nanocrystals. We unveil that tuning the capping ligands is a viable strategy to adjust the material from p-type to ambipolar. Finally, HgTe nanocrystals are integrated into multi pixel devices to quantize spatial homogeneity and onto read out circuits to obtain fast and sensitive infrared laser beam profile

    Toward Functionalized Ultrathin Oxide Films: The Impact of Surface Apical Oxygen

    No full text
    Thin films of transition metal oxides open up a gateway to nanoscale electronic devices beyond silicon characterized by novel electronic functionalities. While such films are commonly prepared in an oxygen atmosphere, they are typically considered to be ideally terminated with the stoichiometric composition. Using the prototypical correlated metal SrVO3_{3} as an example, it is demonstrated that this idealized description overlooks an essential ingredient: oxygen adsorbing at the surface apical sites. The oxygen adatoms, which are present even if the films are kept in an ultrahigh vacuum environment and not explicitly exposed to air, are shown to severely affect the intrinsic electronic structure of a transition metal oxide film. Their presence leads to the formation of an electronically dead surface layer but also alters the band filling and the electron correlations in the thin films. These findings highlight that it is important to take into account surface apical oxygen or—mutatis mutandis—the specific oxygen configuration imposed by a capping layer to predict the behavior of ultrathin films of transition metal oxides near the single unit-cell limit

    Bulk spin polarization of magnetite from spin-resolved hard x-ray photoelectron spectroscopy

    No full text
    There is broad consensus that magnetite (Fe3_3O4_4) is a promising material for spintronics applications due to its high degree of spin polarization at the Fermi level. However, previous attempts to measure the spin polarization by spin-resolved photoemission spectroscopy have been hampered by the use of low photon energies resulting in high surface sensitivity. The surfaces of magnetite, though, tend to reconstruct due to their polar nature, and thus their magnetic and electronic properties may strongly deviate from each other and from the bulk, dependent on their orientation and specific preparation. In this study, we determine the intrinsic—i.e., bulk—spin polarization of magnetite by spin-resolved photoelectron spectroscopy on (111)-oriented thin films, epitaxially grown on ZnO(0001), with hard x-rays, making it a truly bulk-sensitive probe. This becomes possible by using a novel, specially adapted momentum microscope, featuring time-of-flight energy recording and an imaging spin-filter
    corecore