85 research outputs found
Recommended from our members
Use of passive alpha detectors to screen for uranium contamination in a field at Fernald, Ohio
This paper reports the results from a field test of newly developed techniques for inexpensive, in situ screening of soil for alpha contamination. Passive alpha detectors that are commercially available for the detection indoor airborne alpha activity (i.e., {sup 222}Rn) have been modified so they can be applied to the detection of alpha contamination on surfaces or in soils. Results reported here are from an intercomparison involving several different techniques with all measurements being made at the same sites in a field near the formerly used uranium processing facility at Fernald, Ohio, during the summer of 1994. The results for two types of passive alpha detector show that the quality of calibration is improved if soils samples are milled to increase homogeneity within the soil matrices. The correlation between laboratory based radiochemical analyses and quick, field-based screening measurements is acceptable and can be improved if the passive devices are left for longer exposure times in the field. The total cost per measurement for either type of passive alpha detector is probably less than $25 and should provide a cost-effective means for site managers to develop the information needed to find areas with remaining alpha contamination so resources can be allocated efficiently
Strongly nonlinear dynamics of electrolytes in large ac voltages
We study the response of a model micro-electrochemical cell to a large ac
voltage of frequency comparable to the inverse cell relaxation time. To bring
out the basic physics, we consider the simplest possible model of a symmetric
binary electrolyte confined between parallel-plate blocking electrodes,
ignoring any transverse instability or fluid flow. We analyze the resulting
one-dimensional problem by matched asymptotic expansions in the limit of thin
double layers and extend previous work into the strongly nonlinear regime,
which is characterized by two novel features - significant salt depletion in
the electrolyte near the electrodes and, at very large voltage, the breakdown
of the quasi-equilibrium structure of the double layers. The former leads to
the prediction of "ac capacitive desalination", since there is a time-averaged
transfer of salt from the bulk to the double layers, via oscillating diffusion
layers. The latter is associated with transient diffusion limitation, which
drives the formation and collapse of space-charge layers, even in the absence
of any net Faradaic current through the cell. We also predict that steric
effects of finite ion sizes (going beyond dilute solution theory) act to
suppress the strongly nonlinear regime in the limit of concentrated
electrolytes, ionic liquids and molten salts. Beyond the model problem, our
reduced equations for thin double layers, based on uniformly valid matched
asymptotic expansions, provide a useful mathematical framework to describe
additional nonlinear responses to large ac voltages, such as Faradaic
reactions, electro-osmotic instabilities, and induced-charge electrokinetic
phenomena.Comment: 30 pages, 17 eps-figures, RevTe
The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales
Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale-specific patterns, including different environmental drivers, diverse life histories, dispersal, and non-stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long-term drivers and may miss the importance of short-term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems
DIAGNOSTIC AND PREVENTIVE SERVICES IN A NATIONAL INCREMENTAL DENTAL PLAN FOR CHILDREN
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65579/1/j.1752-7325.1977.tb02874.x.pd
The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales
Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale-specific patterns, including different environmental drivers, diverse life histories, dispersal, and non-stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long-term drivers and may miss the importance of short-term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems
Priorities for synthesis research in ecology and environmental science
ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
Priorities for synthesis research in ecology and environmental science
ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
Priorities for synthesis research in ecology and environmental science
Synthesis research in ecology and environmental science improves understanding, advances theory, identifies research priorities, and supports management strategies by linking data, ideas, and tools. Accelerating environmental challenges increases the need to focus synthesis science on the most pressing questions. To leverage input from the broader research community, we convened a virtual workshop with participants from many countries and disciplines to examine how and where synthesis can address key questions and themes in ecology and environmental science in the coming decade. Seven priority research topics emerged: (1) diversity, equity, inclusion, and justice (DEIJ), (2) human and natural systems, (3) actionable and use-inspired science, (4) scale, (5) generality, (6) complexity and resilience, and (7) predictability. Additionally, two issues regarding the general practice of synthesis emerged: the need for increased participant diversity and inclusive research practices; and increased and improved data flow, access, and skill-building. These topics and practices provide a strategic vision for future synthesis in ecology and environmental science
- …