418 research outputs found

    Banks and Banking, Insurance, Torts

    Get PDF

    Automated Peripheral Neuropathy Assessment using Optical Imaging and Foot Anthropometry

    Get PDF
    A large proportion of individuals who live with type-2 diabetes suffer from plantar sensory neuropathy. Regular testing and assessment for the condition is required to avoid ulceration or other damage to patient’s feet. Currently accepted practice involves a trained clinician testing a patient’s feet manually with a hand-held nylon monofilament probe. The procedure is time-consuming, labor-intensive, requires special training, is prone to error and repeatability is difficult. With the vast increase in type-2 diabetes, the number of plantar sensory neuropathy sufferers has already grown to such an extent as to make a traditional manual test problematic. This paper presents the first investigation of a novel approach to automatically identify the pressure points on a given patient’s foot for the examination of sensory neuropathy via optical image processing incorporating plantar anthropometry. The method automatically selects suitable test points on the plantar surface that correspond to those repeatedly chosen by a trained podiatrist. The proposed system automatically identifies the specific pressure points at different locations, namely the toe (hallux), metatarsal heads and heel (Calcaneum) areas. The approach is generic and has shown 100% reliability on the available database used. The database consists of Chinese, Asian, African and Caucasian foot images

    Automated Semmes Weinstein monofilament examination replication using optical imaging and mechanical probe assembly

    Get PDF
    The World Health Organization reports more than 135 million people globally suffer from diabetes, with 25% developing peripheral neuropathy and estimates the numbers living with diabetes will reach over 300 million by 2025. Peripheral neuropathy is a term used to describe the loss of feeling in the peripheral limbs. If not properly managed, amputation of the lower limbs can be the result. Regular screening is required for this condition so as to avoid further deterioration. This paper describes an automated peripheral neuropathy testing device replicating the widely accepted Semmes Weinstein Monofilament Examination. In this paper a patient’s foot is scanned optically and the subsequent image processing and grid information algorithms presented reliably identify the plantar surface sensory neuropathy pressure points on a given patient’s foot. Then, these coordinates are relayed to an automated mechanical probe driven by a microcontroller where it randomly applies the accepted 98mN (10g) of force to those pressure points

    MHC-based detection of antigen-specific CD8+ T cell responses

    Get PDF
    The hallmark of adaptive immunity is its ability to recognise a wide range of antigens and technologies that capture this diversity are therefore of substantial interest. New methods have recently been developed that allow the parallel analysis of T cell reactivity against vast numbers of different epitopes in limited biological material. These technologies are based on the joint binding of differentially labelled MHC multimers on the T cell surface, thereby providing each antigen-specific T cell population with a unique multicolour code. This strategy of ‘combinatorial encoding’ enables detection of many (at least 25) different T cell populations per sample and should be of broad value for both T cell epitope identification and immunomonitoring

    Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Development of a standardized platform for the rapid expansion of tumor-infiltrating lymphocytes (TILs) with anti-tumor function from patients with limited TIL numbers or tumor tissues challenges their clinical application.</p> <p>Methods</p> <p>To facilitate adoptive immunotherapy, we applied genetically-engineered K562 cell-based artificial antigen presenting cells (aAPCs) for the direct and rapid expansion of TILs isolated from primary cancer specimens.</p> <p>Results</p> <p>TILs outgrown in IL-2 undergo rapid, CD28-independent expansion in response to aAPC stimulation that requires provision of exogenous IL-2 cytokine support. aAPCs induce numerical expansion of TILs that is statistically similar to an established rapid expansion method at a 100-fold lower feeder cell to TIL ratio, and greater than those achievable using anti-CD3/CD28 activation beads or extended IL-2 culture. aAPC-expanded TILs undergo numerical expansion of tumor antigen-specific cells, remain amenable to secondary aAPC-based expansion, and have low CD4/CD8 ratios and FOXP3+ CD4+ cell frequencies. TILs can also be expanded directly from fresh enzyme-digested tumor specimens when pulsed with aAPCs. These "young" TILs are tumor-reactive, positively skewed in CD8+ lymphocyte composition, CD28 and CD27 expression, and contain fewer FOXP3+ T cells compared to parallel IL-2 cultures.</p> <p>Conclusion</p> <p>Genetically-enhanced aAPCs represent a standardized, "off-the-shelf" platform for the direct ex vivo expansion of TILs of suitable number, phenotype and function for use in adoptive immunotherapy.</p

    Distributions of charged massive scalars and fermions from evaporating higher-dimensional black holes

    Full text link
    A detailed numerical analysis is performed to obtain the Hawking spectrum for charged, massive brane scalars and fermions on the approximate background of a brane charged rotating higher-dimensional black hole constructed in arXiv:0907.5107. We formulate the problem in terms of a "spinor-like" first order system of differential wave equations not only for fermions, but for scalars as well and integrate it numerically. Flux spectra are presented for non-zero mass, charge and rotation, confirming and extending previous results based on analytic approximations. In particular we describe an inverted charge splitting at low energies, which is not present in four or five dimensions and increases with the number of extra dimensions. This provides another signature of the evaporation of higher-dimensional black holes in TeV scale gravity scenarios.Comment: 19 pages, 6 figures, minor typos corrected, 1 page added with a discussion on higher spins, added reference

    Mutant K-ras oncogene regulates steroidogenesis of normal human adrenocortical cells by the RAF-MEK-MAPK pathway

    Get PDF
    The result of our previous study has shown that the K-ras mutant (pK568MRSV) transfected human adrenocortical cells can significantly increase cortisol production and independently cause cell transformation. The aim of this study is to investigate the effect of the active K-ras oncogene on the cortisol production in normal human adrenocortical cells. First we used isopropyl thiogalactoside to induce the inducible mutant K-ras expression plasmid, pK568MRSV, in the stable transfected human adrenocortical cells. The result showed that the increase of RasGTP levels in transfected cells was time-dependent after isopropyl thiogalactoside induction. Additionally, results from Western blot analysis revealed significant elevation in phosphorylation of c-Raf-1 and Mitogen-activated protein kinase. We also detected the levels of mRNA encoding Cholesterol side-chain cleavage enzyme (P450SCC), 17α-Hydroxylase/17,20-lyase (P450c17) and 3β-Hydroxysteroid dehydrogenase (3βHSD) were increased in human adrenocortical cells transfected with mutant K-ras after IPTG treatment. The increase of mRNA amount in P450scc P450c17 and 3βHSD and the elevation of cortisol level were inhibited with a pretreatment of PD098059, a specific extracellular signal-regulated kinase inhibitor. In our previous report, we proved that lovastatin, a pharmacological inhibitor of p21ras function, also reversed the increase of cortisol level in mutant K-ras stably transfected human adrenocortical cells. Taken together, these findings proved that the active mutant Ras enhanced not only cell proliferation but also steroidogenesis in steroidogenic phenotype cells by activating Raf-MEK-MAPK related signal transduction pathway. Therefore, we believe that K-ras mutants influence regulation of steroidogenesis in adrenocortical cells through RAF-MEK-MAPK pathway

    Identification of novel helper epitopes of MAGE-A4 tumour antigen: useful tool for the propagation of Th1 cells

    Get PDF
    MAGE-A4 has been considered as an attractive cancer-testis (CT) antigen for tumour immunotherapy. It has been well accepted that T-helper type 1 (Th1) cell-dominant immunity is critical for the successful induction of antitumour immunity in a tumour-bearing host. The adoptive Th1 cell therapy has been shown to be an attractive strategy for inducing tumour eradication in mouse systems. However, Th1-cell therapy using human tumour-specific Th1 cells, which were expanded from peripheral blood mononuclear cells (PBMCs) in a clinically useful protocol, has never been performed. Here, we first identified MAGE-A4-derived promiscuous helper epitope, peptide (MAGE-A4 280–299), bound to both HLA-DPB1*0501 and DRB1*1403. Using the peptide, we established a suitable protocol for the propagation of MAGE-A4-specific Th1 cells in vitro. Culture of CD4+ T cells with IFN-γ-treated PBMC-derived adherent cells in the presence of helper epitope peptide resulted in a great expansion of MAGE-A4-reactive Th cells producing IFN-γ , but not IL-4. Moreover, it was shown that ligation of MAGE-A4-reactive Th1 cells with the cognate peptide caused the production of IFN-γ and IL-2. Thus, our identified MAGE-A4 helper epitope peptide will become a good tool for the propagation of tumour-specific Th1 cells applicable to adoptive immunotherapy of human cancer

    Fungal infestation boosts fruit aroma and fruit removal by mammals and birds

    Get PDF
    For four decades, an influential hypothesis has posited that competition for food resources between microbes and vertebrates selects for microbes to alter these resources in ways that make them unpalatable to vertebrates. We chose an understudied cross kingdom interaction to experimentally evaluate the effect of fruit infection by fungi on both vertebrate (mammals and birds) fruit preferences and on ecologically relevant fruit traits (volatile compounds, toughness, etc). Our well-replicated field experiments revealed that, in contrast to previous studies, frugivorous mammals and birds consistently preferred infested over intact fruits. This was concordant with the higher level of attractive volatiles (esters, ethanol) in infested fruits. This investigation suggests that vertebrate frugivores, fleshyfruited plants, and microbes form a tripartite interaction in which each part could interact positively with the other two (e.g. both orange seeds and fungal spores are likely dispersed by mammals). Such a mutualistic view of these complex interactions is opposed to the generalized idea of competition between frugivorous vertebrates and microorganisms. Thus, this research provides a new perspective on the widely accepted plant evolutionary dilemma to make fruits attractive to mutualistic frugivores while unattractive to presumed antagonistic microbes that constrain seed dispersalinfo:eu-repo/semantics/publishedVersio
    corecore